Suppr超能文献

ZINBMM:一种基于单细胞转录组数据的同时聚类和基因选择的通用混合模型。

ZINBMM: a general mixture model for simultaneous clustering and gene selection using single-cell transcriptomic data.

机构信息

Center for Applied Statistics and School of Statistics, Renmin University of China, Beijing, China.

RSS and China-Re Life Joint Lab on Public Health and Risk Management, Renmin University of China, Beijing, China.

出版信息

Genome Biol. 2023 Sep 11;24(1):208. doi: 10.1186/s13059-023-03046-0.

Abstract

Clustering is a critical component of single-cell RNA sequencing (scRNA-seq) data analysis and can help reveal cell types and infer cell lineages. Despite considerable successes, there are few methods tailored to investigating cluster-specific genes contributing to cell heterogeneity, which can promote biological understanding of cell heterogeneity. In this study, we propose a zero-inflated negative binomial mixture model (ZINBMM) that simultaneously achieves effective scRNA-seq data clustering and gene selection. ZINBMM conducts a systemic analysis on raw counts, accommodating both batch effects and dropout events. Simulations and the analysis of five scRNA-seq datasets demonstrate the practical applicability of ZINBMM.

摘要

聚类是单细胞 RNA 测序 (scRNA-seq) 数据分析的关键组成部分,有助于揭示细胞类型并推断细胞谱系。尽管已经取得了相当大的成功,但很少有方法专门用于研究导致细胞异质性的特定于簇的基因,这可以促进对细胞异质性的生物学理解。在这项研究中,我们提出了一种零膨胀负二项混合模型 (ZINBMM),该模型可同时实现有效的 scRNA-seq 数据聚类和基因选择。ZINBMM 对原始计数进行系统分析,同时适应批次效应和缺失事件。模拟和五个 scRNA-seq 数据集的分析证明了 ZINBMM 的实际适用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7af4/10496184/a1b4f694d6a9/13059_2023_3046_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验