Suppr超能文献

单细胞 RNA-Seq 数据的深度批量整合和去噪。

Deep Batch Integration and Denoise of Single-Cell RNA-Seq Data.

机构信息

College of Computer and Information Engineering, Tianjin Normal University, Tianjin, 300387, China.

Department of Biological and Biomedical Sciences, Rowan University, NJ, 08028, USA.

出版信息

Adv Sci (Weinh). 2024 Aug;11(29):e2308934. doi: 10.1002/advs.202308934. Epub 2024 May 22.

Abstract

Numerous single-cell transcriptomic datasets from identical tissues or cell lines are generated from different laboratories or single-cell RNA sequencing (scRNA-seq) protocols. The denoising of these datasets to eliminate batch effects is crucial for data integration, ensuring accurate interpretation and comprehensive analysis of biological questions. Although many scRNA-seq data integration methods exist, most are inefficient and/or not conducive to downstream analysis. Here, DeepBID, a novel deep learning-based method for batch effect correction, non-linear dimensionality reduction, embedding, and cell clustering concurrently, is introduced. DeepBID utilizes a negative binomial-based autoencoder with dual Kullback-Leibler divergence loss functions, aligning cell points from different batches within a consistent low-dimensional latent space and progressively mitigating batch effects through iterative clustering. Extensive validation on multiple-batch scRNA-seq datasets demonstrates that DeepBID surpasses existing tools in removing batch effects and achieving superior clustering accuracy. When integrating multiple scRNA-seq datasets from patients with Alzheimer's disease, DeepBID significantly improves cell clustering, effectively annotating unidentified cells, and detecting cell-specific differentially expressed genes.

摘要

大量来自不同实验室或单细胞 RNA 测序 (scRNA-seq) 方案的相同组织或细胞系的单细胞转录组数据集被生成。对这些数据集进行去噪以消除批次效应对于数据集成至关重要,可确保对生物学问题进行准确的解释和全面的分析。尽管存在许多 scRNA-seq 数据集成方法,但大多数方法效率低下且/或不利于下游分析。在这里,引入了一种新的基于深度学习的方法 DeepBID,该方法可同时进行批量效应校正、非线性降维、嵌入和细胞聚类。DeepBID 使用基于负二项式的自动编码器和双 Kullback-Leibler 散度损失函数,在一致的低维潜在空间中对齐来自不同批次的细胞点,并通过迭代聚类逐步减轻批量效应。在多个批量 scRNA-seq 数据集上的广泛验证表明,DeepBID 在消除批量效应和实现更高的聚类准确性方面优于现有工具。在整合来自阿尔茨海默病患者的多个 scRNA-seq 数据集时,DeepBID 显著改善了细胞聚类,有效地注释了未识别的细胞,并检测到细胞特异性差异表达基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66e8/11304254/8b0280729f5e/ADVS-11-2308934-g007.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验