Suppr超能文献

SD2:通过整合缺失数据和空间信息进行空间分辨转录组学去卷积。

SD2: spatially resolved transcriptomics deconvolution through integration of dropout and spatial information.

机构信息

Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.

Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.

出版信息

Bioinformatics. 2022 Oct 31;38(21):4878-4884. doi: 10.1093/bioinformatics/btac605.

Abstract

MOTIVATION

Unveiling the heterogeneity in the tissues is crucial to explore cell-cell interactions and cellular targets of human diseases. Spatial transcriptomics (ST) supplies spatial gene expression profile which has revolutionized our biological understanding, but variations in cell-type proportions of each spot with dozens of cells would confound downstream analysis. Therefore, deconvolution of ST has been an indispensable step and a technical challenge toward the higher-resolution panorama of tissues.

RESULTS

Here, we propose a novel ST deconvolution method called SD2 integrating spatial information of ST data and embracing an important characteristic, dropout, which is traditionally considered as an obstruction in single-cell RNA sequencing data (scRNA-seq) analysis. First, we extract the dropout-based genes as informative features from ST and scRNA-seq data by fitting a Michaelis-Menten function. After synthesizing pseudo-ST spots by randomly composing cells from scRNA-seq data, auto-encoder is applied to discover low-dimensional and non-linear representation of the real- and pseudo-ST spots. Next, we create a graph containing embedded profiles as nodes, and edges determined by transcriptional similarity and spatial relationship. Given the graph, a graph convolutional neural network is used to predict the cell-type compositions for real-ST spots. We benchmark the performance of SD2 on the simulated seqFISH+ dataset with different resolutions and measurements which show superior performance compared with the state-of-the-art methods. SD2 is further validated on three real-world datasets with different ST technologies and demonstrates the capability to localize cell-type composition accurately with quantitative evidence. Finally, ablation study is conducted to verify the contribution of different modules proposed in SD2.

AVAILABILITY AND IMPLEMENTATION

The SD2 is freely available in github (https://github.com/leihouyeung/SD2) and Zenodo (https://doi.org/10.5281/zenodo.7024684).

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

揭示组织中的异质性对于探索细胞-细胞相互作用和人类疾病的细胞靶标至关重要。空间转录组学(ST)提供了空间基因表达谱,这一技术革新了我们的生物学理解,但每个包含数十个细胞的斑点的细胞类型比例的变化会混淆下游分析。因此,ST 的去卷积一直是组织更高分辨率全景图不可或缺的步骤和技术挑战。

结果

在这里,我们提出了一种称为 SD2 的新型 ST 去卷积方法,该方法整合了 ST 数据的空间信息,并包含了一个重要特征,即传统上被认为是单细胞 RNA 测序数据(scRNA-seq)分析障碍的缺失值。首先,我们通过拟合米氏方程从 ST 和 scRNA-seq 数据中提取基于缺失值的基因作为信息特征。在通过从 scRNA-seq 数据中随机组合细胞来合成伪 ST 点之后,应用自动编码器来发现真实和伪 ST 点的低维非线性表示。接下来,我们创建一个包含嵌入式图谱作为节点的图,边由转录相似性和空间关系决定。给定该图,使用图卷积神经网络来预测真实 ST 点的细胞类型组成。我们在具有不同分辨率和测量值的模拟 seqFISH+数据集上对 SD2 的性能进行了基准测试,结果表明其性能优于最先进的方法。SD2 进一步在具有不同 ST 技术的三个真实数据集上进行了验证,并展示了以定量证据准确定位细胞类型组成的能力。最后,进行了消融研究以验证 SD2 中提出的不同模块的贡献。

可用性和实现

SD2 可在 github(https://github.com/leihouyeung/SD2)和 Zenodo(https://doi.org/10.5281/zenodo.7024684)上免费获得。

补充信息

补充数据可在 Bioinformatics 在线获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3159/9789790/b47019a8babf/btac605f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验