Suppr超能文献

动态回归时间序列模型在研究医院抗菌药物消耗与细菌抗菌药物耐药性之间关系中的应用:系统评价。

Usefulness of dynamic regression time series models for studying the relationship between antimicrobial consumption and bacterial antimicrobial resistance in hospitals: a systematic review.

机构信息

Department of Pharmacy, Nimes University Hospital, Nimes, France.

Infectious and Tropical Diseases Department, Nimes University Hospital, Nimes, France.

出版信息

Antimicrob Resist Infect Control. 2023 Sep 12;12(1):100. doi: 10.1186/s13756-023-01302-3.

Abstract

BACKGROUNG

Antimicrobial resistance (AMR) is on the rise worldwide. Tools such as dynamic regression (DR) models can correlate antimicrobial consumption (AMC) with AMR and predict future trends to help implement antimicrobial stewardship programs (ASPs).

MAIN BODY

We carried out a systematic review of the literature up to 2023/05/31, searching in PubMed, ScienceDirect and Web of Science. We screened 641 articles and finally included 28 studies using a DR model to study the correlation between AMC and AMR at a hospital scale, published in English or French. Country, bacterial species, type of sampling, antimicrobials, study duration and correlations between AMC and AMR were collected. The use of β-lactams was correlated with cephalosporin resistance, especially in Pseudomonas aeruginosa and Enterobacterales. Carbapenem consumption was correlated with carbapenem resistance, particularly in Pseudomonas aeruginosa, Klebsiella pneumoniae and Acinetobacter baumannii. Fluoroquinolone use was correlated with fluoroquinolone resistance in Gram-negative bacilli and methicillin resistance in Staphylococcus aureus. Multivariate DR models highlited that AMC explained from 19 to 96% of AMR variation, with a lag time between AMC and AMR variation of 2 to 4 months. Few studies have investigated the predictive capacity of DR models, which appear to be limited.

CONCLUSION

Despite their statistical robustness, DR models are not widely used. They confirmed the important role of fluoroquinolones, cephalosporins and carbapenems in the emergence of AMR. However, further studies are needed to assess their predictive capacity and usefulness for ASPs.

摘要

背景

抗菌药物耐药性(AMR)在全球呈上升趋势。动态回归(DR)模型等工具可以将抗菌药物使用(AMC)与 AMR 相关联,并预测未来趋势,以帮助实施抗菌药物管理计划(ASPs)。

主要内容

我们对截至 2023 年 5 月 31 日的文献进行了系统回顾,在 PubMed、ScienceDirect 和 Web of Science 中进行了检索。我们筛选了 641 篇文章,最终纳入了 28 项使用 DR 模型研究医院规模下 AMC 与 AMR 相关性的研究,这些研究以英文或法文发表。收集了国家、细菌种类、采样类型、抗菌药物、研究持续时间以及 AMC 与 AMR 之间的相关性。β-内酰胺类药物的使用与头孢菌素耐药性相关,尤其是铜绿假单胞菌和肠杆菌科。碳青霉烯类药物的使用与碳青霉烯耐药性相关,尤其是铜绿假单胞菌、肺炎克雷伯菌和鲍曼不动杆菌。氟喹诺酮类药物的使用与革兰氏阴性杆菌的氟喹诺酮耐药性和金黄色葡萄球菌的耐甲氧西林相关。多变量 DR 模型突出表明,AMC 可解释 AMR 变化的 19%至 96%,AMC 与 AMR 变化之间存在 2 至 4 个月的滞后时间。很少有研究调查了 DR 模型的预测能力,这些模型的预测能力似乎有限。

结论

尽管 DR 模型具有统计学上的稳健性,但它们并未得到广泛应用。它们证实了氟喹诺酮类、头孢菌素类和碳青霉烯类药物在 AMR 出现中的重要作用。然而,需要进一步研究来评估它们的预测能力和在 ASPs 中的实用性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8d22/10496333/f0d30eefb6fa/13756_2023_1302_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验