State Key Laboratory of Food Science and Resources, School of Food Science and Technology, Nanchang University, Nanchang 330047, P. R. China.
Jiangxi Province Centre for Disease Control and Prevention, Nanchang 330029, P. R. China.
ACS Nano. 2023 Sep 26;17(18):18596-18607. doi: 10.1021/acsnano.3c07194. Epub 2023 Sep 12.
The demand for the ultrasensitive and rapid quantitative analysis of trace target analytes has become increasingly urgent. However, the sensitivity of traditional immunoassay-based detection methods is limited due to the contradiction between molecular recognition and signal amplification caused by the size effect of nanoprobes. To address this dilemma, we describe versatile M13 phage-assisted immunorecognition and signal transduction spatiotemporal separation that enable ultrasensitive light-scattering immunoassay systems for the quantitative detection of low-abundance target analytes. The newly developed immunoassay strategy combines the M13 phage-assisted light scattering signal fluctuations of gold nanoparticles (AuNPs) with gold growth (GISG) technology. Given the synergy of M13 phage-mediated leverage effect and GISG-amplified light scattering signal modulation, the practical detection capability of this strategy can achieve the ultrasensitive and rapid quantification of ochratoxin A and alpha-fetoprotein in real samples at the subfemtomolar level within 50 min, displaying about 4 orders of magnitude enhancement in sensitivity compared with traditional phage-based ELISA. To further improve the sensitivity of our immunoassay, the biotin-streptavidin amplification scheme is implemented to detect severe acute respiratory syndrome coronavirus 2 spike protein down to the attomolar range. Overall, this study offers a direction for ultrasensitive quantitative detection of target analytes by the synergistic combination of M13 phage-mediated leverage effect and GISG-amplified light scattering signal modulation.
对痕量目标分析物进行超灵敏和快速定量分析的需求变得越来越迫切。然而,由于纳米探针的尺寸效应导致分子识别与信号放大之间的矛盾,传统基于免疫测定的检测方法的灵敏度受到限制。为了解决这一困境,我们描述了多功能的 M13 噬菌体辅助免疫识别和信号转导时空分离,使超灵敏光散射免疫分析系统能够用于定量检测低丰度目标分析物。新开发的免疫分析策略结合了 M13 噬菌体辅助金纳米粒子(AuNPs)的光散射信号波动与金增长(GISG)技术。鉴于 M13 噬菌体介导的杠杆效应和 GISG 放大的光散射信号调制的协同作用,该策略的实际检测能力可以在 50 分钟内以亚皮摩尔级的水平对实际样品中的黄曲霉毒素 A 和甲胎蛋白进行超灵敏和快速定量,与传统的基于噬菌体的 ELISA 相比,灵敏度提高了约 4 个数量级。为了进一步提高免疫分析的灵敏度,我们实施了生物素-链霉亲和素放大方案,以检测到低至皮摩尔级的严重急性呼吸综合征冠状病毒 2 刺突蛋白。总体而言,这项研究通过 M13 噬菌体介导的杠杆效应和 GISG 放大的光散射信号调制的协同组合,为目标分析物的超灵敏定量检测提供了一个方向。