Suppr超能文献

通气负担作为阻塞性睡眠呼吸暂停严重程度的衡量指标,可预测心血管和全因死亡率。

Ventilatory Burden as a Measure of Obstructive Sleep Apnea Severity Is Predictive of Cardiovascular and All-Cause Mortality.

机构信息

Division of Pulmonary, Critical Care and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, New York.

Center for Brain Health, New York University Langone, New York, New York; and.

出版信息

Am J Respir Crit Care Med. 2023 Dec 1;208(11):1216-1226. doi: 10.1164/rccm.202301-0109OC.

Abstract

The apnea-hypopnea index (AHI), used for the diagnosis of obstructive sleep apnea, captures only the frequency of respiratory events and has demonstrable limitations. We propose a novel automated measure, termed "ventilatory burden" (VB), that represents the proportion of overnight breaths with less than 50% normalized amplitude, and we show its ability to overcome limitations of AHI. Data from two epidemiological cohorts (EPISONO [Sao Paolo Epidemiological Study] and SHHS [Sleep Heart Health Study]) and two retrospective clinical cohorts (DAYFUN; New York University Center for Brain Health) were used in this study to ) derive the normative range of VB, ) assess the relationship between degree of upper airway obstruction and VB, and ) assess the relationship between VB and all-cause and cardiovascular disease (CVD) mortality with and without hypoxic burden that was derived using an in-house automated algorithm. The 95th percentiles of VB in asymptomatic healthy subjects across the EPISONO and the DAYFUN cohorts were 25.2% and 26.7%, respectively (median [interquartile range], VB, 5.5 [3.5-9.7]%; VB, 9.8 [6.4-15.6]%). VB was associated with the degree of upper airway obstruction in a dose-response manner (VB, 31.6 [27.1]%; VB, 7.2 [4.7]%; VB, 17.6 [18.7]%; VB, 41.6 [18.1]%) and exhibited low night-to-night variability (intraclass correlation coefficient [2,1], 0.89). VB was predictive of all-cause and CVD mortality in the SHHS cohort before and after adjusting for covariates including hypoxic burden. Although AHI was predictive of all-cause mortality, it was not associated with CVD mortality in the SHHS cohort. Automated VB can effectively assess obstructive sleep apnea severity, is predictive of all-cause and CVD mortality, and may be a viable alternative to the AHI.

摘要

呼吸暂停-低通气指数(AHI)用于阻塞性睡眠呼吸暂停的诊断,仅捕捉呼吸事件的频率,具有明显的局限性。我们提出了一种新的自动测量方法,称为“通气负担”(VB),它代表夜间呼吸中振幅小于 50%正常的比例,并展示了其克服 AHI 局限性的能力。这项研究使用了两个流行病学队列(EPISONO[圣保罗流行病学研究]和 SHHS[睡眠心脏健康研究])和两个回顾性临床队列(DAYFUN;纽约大学大脑健康中心)的数据,以)得出 VB 的正常范围,)评估上气道阻塞程度与 VB 的关系,以及)评估 VB 与全因和心血管疾病(CVD)死亡率的关系,以及有无缺氧负担,这是使用内部自动化算法得出的。在 EPISONO 和 DAYFUN 队列中,无症状健康受试者的 VB 第 95 百分位数分别为 25.2%和 26.7%(中位数[四分位间距],VB,5.5[3.5-9.7]%;VB,9.8[6.4-15.6]%)。VB 与上气道阻塞程度呈剂量反应关系(VB,31.6[27.1]%;VB,7.2[4.7]%;VB,17.6[18.7]%;VB,41.6[18.1]%),并且夜间变异性低(组内相关系数[2,1],0.89)。在调整包括缺氧负担在内的协变量后,VB 在 SHHS 队列中对全因和 CVD 死亡率具有预测作用。虽然 AHI 对全因死亡率具有预测作用,但在 SHHS 队列中与 CVD 死亡率无关。自动 VB 可以有效地评估阻塞性睡眠呼吸暂停的严重程度,对全因和 CVD 死亡率具有预测作用,可能是 AHI 的可行替代方法。

相似文献

8
Sleep apnea is a common and dangerous cardiovascular risk factor.睡眠呼吸暂停是一种常见且危险的心血管危险因素。
Curr Probl Cardiol. 2025 Jan;50(1):102838. doi: 10.1016/j.cpcardiol.2024.102838. Epub 2024 Sep 4.

引用本文的文献

3
Artificial Intelligence Can Drive Sleep Medicine.人工智能可推动睡眠医学发展。
Sleep Med Clin. 2025 Mar;20(1):81-91. doi: 10.1016/j.jsmc.2024.10.001. Epub 2024 Dec 9.
6
Telemedicine for obstructive sleep apnea syndrome: An updated review.阻塞性睡眠呼吸暂停综合征的远程医疗:最新综述。
Digit Health. 2024 Oct 24;10:20552076241293928. doi: 10.1177/20552076241293928. eCollection 2024 Jan-Dec.
9
Obstructive Sleep Apnea, Platelet Aggregation, and Cardiovascular Risk.阻塞性睡眠呼吸暂停、血小板聚集与心血管风险
J Am Heart Assoc. 2024 Aug 6;13(15):e034079. doi: 10.1161/JAHA.123.034079. Epub 2024 Jul 26.
10
Physiologic Consequences of Upper Airway Obstruction in Sleep Apnea.睡眠呼吸暂停中上气道阻塞的生理后果。
Chest. 2024 Nov;166(5):1209-1217. doi: 10.1016/j.chest.2024.05.028. Epub 2024 Jun 15.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验