Suppr超能文献

基于多夜测试的睡眠呼吸暂停严重程度的可变性和分类错误。

Variability and Misclassification of Sleep Apnea Severity Based on Multi-Night Testing.

机构信息

Department of Medicine, Johns Hopkins University, Baltimore, MD; Department of Epidemiology, Johns Hopkins University, Baltimore, MD.

Department of Medicine, Johns Hopkins University, Baltimore, MD.

出版信息

Chest. 2020 Jul;158(1):365-373. doi: 10.1016/j.chest.2020.01.039. Epub 2020 Feb 17.

Abstract

BACKGROUND

Portable monitoring is a convenient means for diagnosing sleep apnea. However, data on whether one night of monitoring is sufficiently precise for the diagnosis of sleep apnea are limited.

RESEARCH QUESTION

The current study sought to determine the variability and misclassification in disease severity over three consecutive nights in a large sample of patients referred for sleep apnea.

METHODS

A sample of 10,340 adults referred for sleep apnea testing was assessed. A self-applied type III monitor was used for three consecutive nights. The apnea-hypopnea index (AHI) was determined for each night, and a reference AHI was computed by using data from all 3 nights. Pairwise correlations and the proportion misclassified regarding disease severity were computed for each of the three AHI values against the reference AHI.

RESULTS

Strong correlations were observed between the AHI from each of the 3 nights (r = 0.87-0.89). However, substantial within-patient variability in the AHI and significant misclassification in sleep apnea severity were observed based on any 1 night of monitoring. Approximately 93% of the patients with a normal study on the first night and 87% of those with severe sleep apnea on the first night were correctly classified compared with the reference derived from all three nights. However, approximately 20% of the patients with mild and moderate sleep apnea on the first night were misdiagnosed either as not having sleep apnea or as having mild disease, respectively.

CONCLUSIONS

In patients with mild to moderate sleep apnea, one night of portable testing can lead to misclassification of disease severity given the substantial night-to-night variability in the AHI.

摘要

背景

便携式监测是诊断睡眠呼吸暂停的一种便捷手段。然而,关于一晚监测是否足以准确诊断睡眠呼吸暂停的数据有限。

研究问题

本研究旨在确定在大量睡眠呼吸暂停患者中,连续三晚监测的疾病严重程度的可变性和分类错误。

方法

研究纳入了 10340 名接受睡眠呼吸暂停测试的成年人。使用自我应用的 III 型监测仪连续监测三晚。确定每晚的呼吸暂停低通气指数(AHI),并通过所有 3 晚的数据计算参考 AHI。计算了每个 AHI 值与参考 AHI 的两两相关性以及疾病严重程度的分类错误比例。

结果

观察到 3 晚的 AHI 之间存在很强的相关性(r=0.87-0.89)。然而,基于任何一晚的监测,均观察到患者内 AHI 的显著变异性和睡眠呼吸暂停严重程度的显著分类错误。与参考值(来自所有 3 晚的数据)相比,第一晚正常的患者中约 93%得到正确分类,第一晚严重睡眠呼吸暂停的患者中约 87%得到正确分类。然而,第一晚轻度和中度睡眠呼吸暂停的患者中,约 20%被误诊为没有睡眠呼吸暂停或轻度疾病。

结论

在轻度至中度睡眠呼吸暂停患者中,由于 AHI 的夜间变异性较大,一晚的便携式测试可能导致疾病严重程度的分类错误。

相似文献

引用本文的文献

本文引用的文献

6
Clinical consequences and economic costs of untreated obstructive sleep apnea syndrome.未经治疗的阻塞性睡眠呼吸暂停综合征的临床后果及经济成本。
World J Otorhinolaryngol Head Neck Surg. 2015 Sep 8;1(1):17-27. doi: 10.1016/j.wjorl.2015.08.001. eCollection 2015 Sep.
7
Night-to-night variability of obstructive sleep apnea.阻塞性睡眠呼吸暂停的夜间变异性。
J Sleep Res. 2017 Dec;26(6):782-788. doi: 10.1111/jsr.12558. Epub 2017 May 26.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验