Suppr超能文献

基因组异质性、干性和肿瘤微环境的综合聚类特征可预测胶质瘤的预后和免疫治疗反应。

Integrated clustering signature of genomic heterogeneity, stemness and tumor microenvironment predicts glioma prognosis and immunotherapy response.

机构信息

Advanced Medical Research Center of Zhengzhou University, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China.

Department of Anesthesiology and Perioperative Medicine, Zhengzhou Central Hospital Affiliated to Zhengzhou University, Zhengzhou 450007, China.

出版信息

Aging (Albany NY). 2023 Sep 11;15(17):9086-9104. doi: 10.18632/aging.205018.

Abstract

BACKGROUND

Glioma is the most frequent primary tumor of the central nervous system. The high heterogeneity of glioma tumors enables them to adapt to challenging environments, leading to resistance to treatment. Therefore, to detect the driving factors and improve the prognosis of glioma, it is essential to have a comprehensive understanding of the genomic heterogeneity, stemness, and immune microenvironment of glioma.

METHODS

We classified gliomas into various subtypes based on stemness, genomic heterogeneity, and immune microenvironment consensus clustering analysis. We identified risk hub genes linked to heterogeneous characteristics using WGCNA, LASSO, and multivariate Cox regression analysis and utilized them to create an effective risk model.

RESULTS

We thoroughly investigated the genomic heterogeneity, stemness, and immune microenvironment of glioma and identified the risk hub genes RAB42, SH2D4A, and GDF15 based on the TCGA dataset. We developed a risk model utilizing these genes that can reliably predict the prognosis of glioma patients. The risk signature showed a positive correlation with T cell exhaustion and increased infiltration of immunosuppressive cells, and a negative correlation with the response to immunotherapy. Moreover, we discovered that SH2D4A, one of the risk hub genes, could stimulate the migration and proliferation of glioma cells.

CONCLUSIONS

This study identified risk hub genes and established a risk model by analyzing the genomic heterogeneity, stemness, and immune microenvironment of glioma. Our findings will facilitate the diagnosis and prediction of glioma prognosis and may lead to potential treatment strategies for glioma.

摘要

背景

脑胶质瘤是中枢神经系统最常见的原发性肿瘤。脑胶质瘤肿瘤的高度异质性使其能够适应挑战性的环境,从而导致治疗耐药。因此,为了检测脑胶质瘤的驱动因素并改善其预后,全面了解脑胶质瘤的基因组异质性、干性和免疫微环境至关重要。

方法

我们基于干性、基因组异质性和免疫微环境共识聚类分析,将脑胶质瘤分为不同亚型。我们使用 WGCNA、LASSO 和多变量 Cox 回归分析来鉴定与异质特征相关的风险枢纽基因,并利用它们构建有效的风险模型。

结果

我们深入研究了脑胶质瘤的基因组异质性、干性和免疫微环境,并基于 TCGA 数据集鉴定了 RAB42、SH2D4A 和 GDF15 这三个风险枢纽基因。我们利用这些基因构建了一个能够可靠预测脑胶质瘤患者预后的风险模型。该风险特征与 T 细胞耗竭和免疫抑制细胞浸润增加呈正相关,与免疫治疗反应呈负相关。此外,我们发现风险枢纽基因之一 SH2D4A 能够刺激脑胶质瘤细胞的迁移和增殖。

结论

本研究通过分析脑胶质瘤的基因组异质性、干性和免疫微环境,鉴定了风险枢纽基因并建立了风险模型。我们的研究结果将有助于脑胶质瘤的诊断和预后预测,并可能为脑胶质瘤的潜在治疗策略提供依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验