University of Applied Sciences and Arts Northwestern Switzerland (FHNW), Muttenz, Switzerland.
Development Sciences, UCB Biopharma SRL, Braine L'Alleud, Belgium.
Cell Mol Neurobiol. 2023 Nov;43(8):4173-4187. doi: 10.1007/s10571-023-01404-x. Epub 2023 Sep 12.
Delivering biologics to elicit a therapeutic response in the central nervous system (CNS) remains challenging due to the presence of the blood-brain barrier (BBB). Receptor-mediated transcytosis is a strategy to improve brain exposure after systemic drug administration. The availability of a clinically relevant in vitro BBB model is crucial to investigate transcytosis pathways and to predict the penetration of biologics into the CNS. We created a perfused human in vitro BBB model made of induced pluripotent stem cells (iPSC)-derived brain microvascular endothelial cells (BMEC) for studying transferrin receptor-mediated transcytosis. iPSC-derived BMEC were seeded in the top channel of a three-lane microfluidic device (OrganoPlate®). After 2 days in culture, the established cell model exhibited relevant BBB features, including physiological transendothelial electrical resistance in a transwell setting (1500 Ω*cm), reduced apparent permeability (Papp) to the fluorescence tracer Lucifer yellow (20-fold less than cell-free chips), expression of key BBB markers such as tight junctions proteins, transporters, receptors and functional P-gp efflux pump. Moreover, the model exhibited functional transferrin receptor-mediated uptake and transcytosis. To assess selective transferrin receptor-mediated transcytosis, a mixture of anti-human transferrin receptor (MEM-189) and control (sheep IgG anti-bovine serum albumin) antibodies was perfused in the top channel for 2 h. The Papp of MEM-189 was 11-fold higher than that of the control antibody, demonstrating facilitated receptor-mediated transcytosis. Compared to published work reporting a 2-fold ratio, this result is remarkable and establishes the suitability of our model for exploring receptor-mediated transcytosis and screening of antibodies for putative brain shuttle application. A perfused in vitro human model made of iPSC-derived BMEC with the chief characteristics (barrier tightness, functionality) of the human BBB can be applied to study transferrin receptor (TfR)-mediated transcytosis of therapeutic antibodies. This may bring critical advances in drug shuttle technology. Graphical abstract generated with biorender.com.
由于血脑屏障 (BBB) 的存在,将生物制剂递送到中枢神经系统 (CNS) 以产生治疗反应仍然具有挑战性。受体介导的胞吞作用是一种在全身给药后提高大脑暴露的策略。具有临床相关的体外 BBB 模型对于研究转胞吞途径和预测生物制剂穿透中枢神经系统至关重要。我们创建了一种由诱导多能干细胞 (iPSC) 衍生的脑微血管内皮细胞 (BMEC) 制成的灌注式人体外 BBB 模型,用于研究转铁蛋白受体介导的胞吞作用。iPSC 衍生的 BMEC 接种在三通道微流控装置 (OrganoPlate®) 的顶通道上。培养 2 天后,所建立的细胞模型表现出相关的 BBB 特征,包括在 Transwell 环境中具有生理跨内皮电阻 (1500 Ω*cm),对荧光示踪剂 Lucifer yellow 的表观渗透率 (Papp) 降低 (比无细胞芯片低 20 倍),表达关键的 BBB 标志物,如紧密连接蛋白、转运体、受体和功能性 P-gp 外排泵。此外,该模型还表现出功能性转铁蛋白受体介导的摄取和转胞吞作用。为了评估选择性转铁蛋白受体介导的转胞吞作用,在顶通道中灌注了抗人转铁蛋白受体 (MEM-189) 和对照 (绵羊 IgG 抗牛血清白蛋白) 抗体混合物 2 小时。MEM-189 的 Papp 比对照抗体高 11 倍,表明促进了受体介导的转胞吞作用。与报道的 2 倍比值相比,这一结果非常显著,证明了我们的模型适合用于探索受体介导的转胞吞作用和筛选潜在的脑穿梭应用的抗体。由 iPSC 衍生的 BMEC 制成的灌注式体外人模型具有人类 BBB 的主要特征(屏障紧密性、功能性),可用于研究治疗性抗体的转铁蛋白受体 (TfR) 介导的转胞吞作用。这可能会在药物穿梭技术方面带来重大进展。图形摘要由 biorender.com 生成。