Institute of Marine Science, University of Auckland, Auckland, New Zealand.
Faculty of Biosciences and Aquaculture, Nord University, Bodo, Norway.
PeerJ. 2023 Sep 7;11:e15880. doi: 10.7717/peerj.15880. eCollection 2023.
The functional traits of species depend both on species' evolutionary characteristics and their local environmental conditions and opportunities. The temperature-size rule (TSR), gill-oxygen limitation theory (GOLT), and temperature constraint hypothesis (TCH) have been proposed to explain the gradients of body size and trophic level of marine species. However, how functional traits vary both with latitude and depth have not been quantified at a global scale for any marine taxon. We compared the latitudinal gradients of trophic level and maximum body size of 5,619 marine fish from modelled species ranges, based on (1) three body size ranges, <30, 30-100, and >100 cm, and (2) four trophic levels, <2.20, 2.20-2.80, 2.81-3.70, >3.70. These were parsed into 5° latitudinal intervals in four depth zones: whole water column, 0-200, 201-1,000, and 1,001-6,000 m. We described the relationship between latitudinal gradients of functional traits and salinity, sea surface and near seabed temperatures, and dissolved oxygen. We found mean body sizes and mean trophic levels of marine fish were smaller and lower in the warmer latitudes, and larger and higher respectively in the high latitudes except for the Southern Ocean (Antarctica). Fish species with trophic levels ≤2.80 were dominant in warmer and absent in colder environments. We attribute these differences in body size and trophic level between polar regions to the greater environmental heterogeneity of the Arctic compared to Antarctica. We suggest that fish species' mean maximum body size declined with depth because of decreased dissolved oxygen. These results support the TSR, GOLT and TCH hypotheses respectively. Thus, at the global scale, temperature and oxygen are primary factors affecting marine fishes' biogeography and biological traits.
物种的功能特征既取决于物种的进化特征,也取决于其局部环境条件和机会。温度-体型规律(TSR)、鳃氧限制理论(GOLT)和温度约束假说(TCH)已被提出,以解释海洋物种的体型和营养级梯度。然而,任何海洋分类群的功能特征如何随纬度和深度而变化,在全球范围内都没有被量化。我们比较了基于模型物种分布的 5619 种海洋鱼类的营养级和最大体型的纬度梯度,(1)体型大小分为<30、30-100 和>100cm 三个范围,(2)营养级分为<2.20、2.20-2.80、2.81-3.70、>3.70 四个范围。这些数据在四个深度带中被分为 5°的纬度间隔:整个水柱、0-200、201-1000 和 1001-6000m。我们描述了功能特征的纬度梯度与盐度、海面和近海底温度以及溶解氧之间的关系。我们发现,海洋鱼类的平均体型和平均营养级在温暖的纬度上较小和较低,而在高纬度上较大和较高,除了南大洋(南极洲)以外。营养级≤2.80 的鱼类物种在温暖的环境中占优势,在寒冷的环境中则不存在。我们将极地地区体型和营养级之间的这些差异归因于北极与南极洲相比,环境的异质性更大。我们认为,鱼类物种的平均最大体型随深度下降是由于溶解氧减少所致。这些结果分别支持 TSR、GOLT 和 TCH 假说。因此,在全球范围内,温度和氧气是影响海洋鱼类生物地理学和生物学特征的主要因素。