Suppr超能文献

全球变暖正在导致赤道附近海洋物种丰富度的明显下降。

Global warming is causing a more pronounced dip in marine species richness around the equator.

机构信息

Institute of Marine Science, The University of Auckland, Auckland 1142, New Zealand;

School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong 999077.

出版信息

Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). doi: 10.1073/pnas.2015094118.

Abstract

The latitudinal gradient in species richness, with more species in the tropics and richness declining with latitude, is widely known and has been assumed to be stable over recent centuries. We analyzed data on 48,661 marine animal species since 1955, accounting for sampling variation, to assess whether the global latitudinal gradient in species richness is being impacted by climate change. We confirm recent studies that show a slight dip in species richness at the equator. Moreover, richness across latitudinal bands was sensitive to temperature, reaching a plateau or declining above a mean annual sea surface temperature of 20 °C for most taxa. In response, since the 1970s, species richness has declined at the equator relative to an increase at midlatitudes and has shifted north in the northern hemisphere, particularly among pelagic species. This pattern is consistent with the hypothesis that climate change is impacting the latitudinal gradient in marine biodiversity at a global scale. The intensification of the dip in species richness at the equator, especially for pelagic species, suggests that it is already too warm there for some species to survive.

摘要

物种丰富度的纬度梯度,即热带地区物种较多,而随着纬度的增加,物种丰富度逐渐减少,这是广为人知的,并被认为在最近几个世纪以来是稳定的。我们分析了自 1955 年以来的 48661 种海洋动物物种的数据,考虑了采样的变化,以评估全球物种丰富度的纬度梯度是否受到气候变化的影响。我们证实了最近的研究表明,在赤道地区物种丰富度略有下降。此外,大多数分类群的纬度带丰富度对温度敏感,在年平均海面温度超过 20°C 时达到一个平台或下降。因此,自 20 世纪 70 年代以来,与中纬度地区的增加相比,赤道地区的物种丰富度下降了,并且在北半球向北转移,特别是在远洋物种中。这种模式与气候变化正在全球范围内影响海洋生物多样性的纬度梯度的假设是一致的。赤道地区物种丰富度下降幅度的加剧,尤其是对远洋物种而言,表明那里的温度已经对某些物种的生存造成了威胁。

相似文献

1
Global warming is causing a more pronounced dip in marine species richness around the equator.
Proc Natl Acad Sci U S A. 2021 Apr 13;118(15). doi: 10.1073/pnas.2015094118.
2
Bimodality of Latitudinal Gradients in Marine Species Richness.
Trends Ecol Evol. 2016 Sep;31(9):670-676. doi: 10.1016/j.tree.2016.06.001. Epub 2016 Jun 29.
3
Global biodiversity and biogeography of mangrove crabs: Temperature, the key driver of latitudinal gradients of species richness.
J Therm Biol. 2020 Aug;92:102692. doi: 10.1016/j.jtherbio.2020.102692. Epub 2020 Aug 14.
7
Unimodal latitudinal pattern of land-snail species richness across northern Eurasian lowlands.
PLoS One. 2014 Aug 4;9(8):e104035. doi: 10.1371/journal.pone.0104035. eCollection 2014.
8
Climatic drivers of hemispheric asymmetry in global patterns of ant species richness.
Ecol Lett. 2009 Apr;12(4):324-33. doi: 10.1111/j.1461-0248.2009.01291.x.
9
A Global-Scale Mid-Domain Effect Cannot Explain the Latitudinal Gradient in Species Richness.
Acta Biotheor. 2020 Jun;68(2):271-274. doi: 10.1007/s10441-019-09361-z. Epub 2019 Aug 31.
10
A world dataset on the geographic distributions of Solenidae razor clams (Mollusca: Bivalvia).
Biodivers Data J. 2019 Jan 31(7):e31375. doi: 10.3897/BDJ.7.e31375. eCollection 2019.

引用本文的文献

1
Integrating hotspot dynamics and centers of diversity: a review of Indo-Australian Archipelago biogeographic evolution and conservation.
Mar Life Sci Technol. 2025 Jul 30;7(3):420-433. doi: 10.1007/s42995-025-00313-w. eCollection 2025 Aug.
3
Quantifying the ecological consequences of climate change in coastal ecosystems.
Camb Prism Coast Futur. 2023 Oct 19;1:e39. doi: 10.1017/cft.2023.27. eCollection 2023.
5
Climate change redefines sea turtle hotspots: Vessel strike risks and gaps in protected areas.
Sci Adv. 2025 Jun 27;11(26):eadw4495. doi: 10.1126/sciadv.adw4495. Epub 2025 Jun 25.
7
Heat shock transcription factor-mediated thermal tolerance and cell size plasticity in marine diatoms.
Nat Commun. 2025 Apr 10;16(1):3404. doi: 10.1038/s41467-025-58547-2.
8
Selectivity of mass extinctions: Patterns, processes, and future directions.
Camb Prism Extinct. 2023 May 9;1:e12. doi: 10.1017/ext.2023.10. eCollection 2023.
9
Marine species and assemblage change foreshadowed by their thermal bias over Early Jurassic warming.
Nat Commun. 2025 Feb 5;16(1):1370. doi: 10.1038/s41467-025-56589-0.

本文引用的文献

1
Flat latitudinal diversity gradient caused by the Permian-Triassic mass extinction.
Proc Natl Acad Sci U S A. 2020 Jul 28;117(30):17578-17583. doi: 10.1073/pnas.1918953117. Epub 2020 Jul 6.
2
Past and future decline of tropical pelagic biodiversity.
Proc Natl Acad Sci U S A. 2020 Jun 9;117(23):12891-12896. doi: 10.1073/pnas.1916923117. Epub 2020 May 26.
3
The projected timing of abrupt ecological disruption from climate change.
Nature. 2020 Apr;580(7804):496-501. doi: 10.1038/s41586-020-2189-9. Epub 2020 Apr 8.
4
Greater vulnerability to warming of marine versus terrestrial ectotherms.
Nature. 2019 May;569(7754):108-111. doi: 10.1038/s41586-019-1132-4. Epub 2019 Apr 24.
6
Marine biogeographic realms and species endemicity.
Nat Commun. 2017 Oct 20;8(1):1057. doi: 10.1038/s41467-017-01121-2.
7
Marine Biodiversity, Biogeography, Deep-Sea Gradients, and Conservation.
Curr Biol. 2017 Jun 5;27(11):R511-R527. doi: 10.1016/j.cub.2017.04.060.
8
Marine Species Richness Is Bimodal with Latitude: A Reply to Fernandez and Marques.
Trends Ecol Evol. 2017 Apr;32(4):234-237. doi: 10.1016/j.tree.2017.02.007. Epub 2017 Feb 28.
9
Planktonic equatorial diversity troughs: fact or artifact? Latitudinal diversity gradients in Radiolaria.
Ecology. 2017 Jan;98(1):112-124. doi: 10.1002/ecy.1623. Epub 2016 Dec 9.
10
Bimodality of Latitudinal Gradients in Marine Species Richness.
Trends Ecol Evol. 2016 Sep;31(9):670-676. doi: 10.1016/j.tree.2016.06.001. Epub 2016 Jun 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验