Akyea Ralph K, Ntaios George, Kontopantelis Evangelos, Georgiopoulos Georgios, Soria Daniele, Asselbergs Folkert W, Kai Joe, Weng Stephen F, Qureshi Nadeem
PRISM Research Group, Centre for Academic Primary Care, School of Medicine, University of Nottingham, Nottingham, United Kingdom.
Department of Internal Medicine, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece.
PLOS Digit Health. 2023 Sep 13;2(9):e0000334. doi: 10.1371/journal.pdig.0000334. eCollection 2023 Sep.
Individuals developing stroke have varying clinical characteristics, demographic, and biochemical profiles. This heterogeneity in phenotypic characteristics can impact on cardiovascular disease (CVD) morbidity and mortality outcomes. This study uses a novel clustering approach to stratify individuals with incident stroke into phenotypic clusters and evaluates the differential burden of recurrent stroke and other cardiovascular outcomes. We used linked clinical data from primary care, hospitalisations, and death records in the UK. A data-driven clustering analysis (kamila algorithm) was used in 48,114 patients aged ≥ 18 years with incident stroke, from 1-Jan-1998 to 31-Dec-2017 and no prior history of serious vascular events. Cox proportional hazards regression was used to estimate hazard ratios (HRs) for subsequent adverse outcomes, for each of the generated clusters. Adverse outcomes included coronary heart disease (CHD), recurrent stroke, peripheral vascular disease (PVD), heart failure, CVD-related and all-cause mortality. Four distinct phenotypes with varying underlying clinical characteristics were identified in patients with incident stroke. Compared with cluster 1 (n = 5,201, 10.8%), the risk of composite recurrent stroke and CVD-related mortality was higher in the other 3 clusters (cluster 2 [n = 18,655, 38.8%]: hazard ratio [HR], 1.07; 95% CI, 1.02-1.12; cluster 3 [n = 10,244, 21.3%]: HR, 1.20; 95% CI, 1.14-1.26; and cluster 4 [n = 14,014, 29.1%]: HR, 1.44; 95% CI: 1.37-1.50). Similar trends in risk were observed for composite recurrent stroke and all-cause mortality outcome, and subsequent recurrent stroke outcome. However, results were not consistent for subsequent risk in CHD, PVD, heart failure, CVD-related mortality, and all-cause mortality. In this proof of principle study, we demonstrated how a heterogenous population of patients with incident stroke can be stratified into four relatively homogenous phenotypes with differential risk of recurrent and major cardiovascular outcomes. This offers an opportunity to revisit the stratification of care for patients with incident stroke to improve patient outcomes.
发生中风的个体具有不同的临床特征、人口统计学和生化特征。这种表型特征的异质性会影响心血管疾病(CVD)的发病率和死亡率。本研究采用一种新颖的聚类方法,将新发中风个体分层为不同的表型聚类,并评估复发性中风和其他心血管结局的差异负担。我们使用了来自英国初级医疗、住院治疗和死亡记录的关联临床数据。对1998年1月1日至2017年12月31日期间年龄≥18岁、新发中风且无严重血管事件既往史的48114例患者进行了数据驱动的聚类分析(卡米拉算法)。采用Cox比例风险回归来估计每个生成聚类中后续不良结局的风险比(HRs)。不良结局包括冠心病(CHD)、复发性中风、外周血管疾病(PVD)、心力衰竭、CVD相关死亡率和全因死亡率。在新发中风患者中识别出了四种具有不同潜在临床特征的不同表型。与聚类1(n = 5201,10.8%)相比,其他3个聚类中复发性中风和CVD相关死亡率的复合风险更高(聚类2 [n = 18655,38.8%]:风险比[HR],1.07;95%置信区间[CI],1.02 - 1.12;聚类3 [n = 10244,21.3%]:HR,1.20;95% CI,1.14 - 1.26;聚类4 [n = 14014,29.1%]:HR,1.44;95% CI:1.37 - 1.50)。在复发性中风和全因死亡率复合结局以及后续复发性中风结局方面观察到了类似的风险趋势。然而,在CHD、PVD、心力衰竭、CVD相关死亡率和全因死亡率的后续风险方面,结果并不一致。在这项原理验证研究中,我们展示了如何将异质性的新发中风患者群体分层为四种相对同质的表型,其复发性和主要心血管结局的风险各不相同。这为重新审视新发中风患者的分层护理提供了机会,以改善患者结局。