Cheng Cuixia, Zhou Yadong, Xu Yaobin, Jia Hao, Kim Jumyeong, Xu Wu, Wang Chongmin, Gao Peiyuan, Zhu Zihua
Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi, Hubei 435002, China.
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
Nano Lett. 2023 Sep 27;23(18):8385-8391. doi: 10.1021/acs.nanolett.3c00709. Epub 2023 Sep 13.
We use liquid secondary ion mass spectroscopy, cryogenic transmission electron microscopy, and density functional theory calculation to delineate the molecular process in the formation of the solid-electrolyte interphase (SEI) layer under the dynamic operating conditions. We discover that the onset potential for SEI layer formation and the thickness of the SEI show dependence on the solvation shell structure. On a Cu film anode, the SEI is noticed to start to form at around 2.0 V (nominal cell voltage) with a final thickness of about 40-50 nm in the 1.0 M LiPF/EC-DMC electrolyte, while for the case of 1.0 M LiFSI/DME, the SEI starts to form at around 1.5 V with a final thickness of about 20 nm. Our observations clearly indicate the inner and outer SEI layer formation and dissipation upon charging and discharging, implying a continued evolution of electrolyte structure with extended cycling.
我们使用液体二次离子质谱、低温透射电子显微镜和密度泛函理论计算来描绘在动态操作条件下固体电解质界面(SEI)层形成过程中的分子过程。我们发现SEI层形成的起始电位和SEI的厚度取决于溶剂化壳层结构。在铜膜阳极上,在1.0 M LiPF/EC-DMC电解质中,SEI在约2.0 V(标称电池电压)左右开始形成,最终厚度约为40-50 nm,而对于1.0 M LiFSI/DME的情况,SEI在约1.5 V开始形成,最终厚度约为20 nm。我们的观察清楚地表明了充电和放电时SEI内层和外层的形成与消散,这意味着随着循环次数的增加,电解质结构在持续演变。