Clinica AI, New York, New York.
Clinica AI, New York, New York.
Am J Med. 2023 Dec;136(12):1169-1178.e7. doi: 10.1016/j.amjmed.2023.08.016. Epub 2023 Sep 11.
The ongoing emergence of novel severe acute respiratory syndrome coronavirus 2 strains such as the Omicron variant amplifies the need for precision in predicting severe COVID-19 outcomes. This study presents a machine learning model, tailored to the evolving COVID-19 landscape, emphasizing novel risk factors and refining the definition of severe outcomes to predict the risk of a patient experiencing severe disease more accurately.
Utilizing electronic health records from the Healthjump database, this retrospective study examined over 1 million US COVID-19 diagnoses from March 2020 to September 2022. Our model predicts severe outcomes, including acute respiratory failure, intensive care unit admission, or ventilator use, circumventing biases associated with hospitalization, which exhibited ∼4× geographical variance of the new outcome.
The model exceeded similar predictors with an area under the curve of 0.83 without lab data to predict patient risk. It identifies new risk factors, including acute care history, health care encounters, and distinct medication use. An increase in severe outcomes, typically 2-3× higher than subsequent months, was observed at the onset of each new strain era, followed by a plateau phase, but the risk factors remain consistent across strain eras.
We offer an improved machine learning model and risk score for predicting severe outcomes during changing COVID-19 strain eras. By emphasizing a more clinically precise definition of severe outcomes, the study provides insights for resource allocation and intervention strategies, aiming to better patient outcomes and reduce health care strain. The necessity for regular model updates is highlighted to maintain relevance amidst the rapidly evolving COVID-19 epidemic.
新型严重急性呼吸综合征冠状病毒 2 株(如奥密克戎变异株)的不断出现,加剧了准确预测严重 COVID-19 结局的需求。本研究提出了一种机器学习模型,针对不断变化的 COVID-19 情况进行了定制,强调了新的风险因素,并对严重结局的定义进行了细化,以更准确地预测患者发生严重疾病的风险。
本回顾性研究利用 Healthjump 数据库中的电子健康记录,对 2020 年 3 月至 2022 年 9 月期间超过 100 万例美国 COVID-19 诊断进行了分析。我们的模型预测严重结局,包括急性呼吸衰竭、入住重症监护病房或使用呼吸机,避免了与住院相关的偏倚,后者显示新结局的地理差异约为 4 倍。
该模型在没有实验室数据的情况下,通过预测患者风险,其曲线下面积(AUC)超过了类似的预测指标,达到了 0.83。它确定了新的风险因素,包括急性护理史、医疗保健接触和独特的用药情况。在每个新的毒株时代开始时,严重结局的发生率都会增加,通常比后续几个月高出 2-3 倍,随后进入平台期,但在不同的毒株时代,风险因素是一致的。
我们提供了一种改进的机器学习模型和风险评分,用于预测在不断变化的 COVID-19 毒株时代的严重结局。通过强调更具临床精确性的严重结局定义,本研究为资源分配和干预策略提供了见解,旨在改善患者结局并减轻医疗保健压力。强调了定期更新模型的必要性,以保持在快速演变的 COVID-19 疫情中的相关性。