School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.
Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
Semin Cancer Biol. 2023 Nov;96:11-25. doi: 10.1016/j.semcancer.2023.09.001. Epub 2023 Sep 12.
Breast cancer is a significant global health burden, with increasing morbidity and mortality worldwide. Early screening and accurate diagnosis are crucial for improving prognosis. Radiographic imaging modalities such as digital mammography (DM), digital breast tomosynthesis (DBT), magnetic resonance imaging (MRI), ultrasound (US), and nuclear medicine techniques, are commonly used for breast cancer assessment. And histopathology (HP) serves as the gold standard for confirming malignancy. Artificial intelligence (AI) technologies show great potential for quantitative representation of medical images to effectively assist in segmentation, diagnosis, and prognosis of breast cancer. In this review, we overview the recent advancements of AI technologies for breast cancer, including 1) improving image quality by data augmentation, 2) fast detection and segmentation of breast lesions and diagnosis of malignancy, 3) biological characterization of the cancer such as staging and subtyping by AI-based classification technologies, 4) prediction of clinical outcomes such as metastasis, treatment response, and survival by integrating multi-omics data. Then, we then summarize large-scale databases available to help train robust, generalizable, and reproducible deep learning models. Furthermore, we conclude the challenges faced by AI in real-world applications, including data curating, model interpretability, and practice regulations. Besides, we expect that clinical implementation of AI will provide important guidance for the patient-tailored management.
乳腺癌是一个重大的全球健康负担,其发病率和死亡率在全球范围内都呈上升趋势。早期筛查和准确诊断对于改善预后至关重要。放射影像学检查方法,如数字乳腺 X 线摄影(DM)、数字乳腺断层合成(DBT)、磁共振成像(MRI)、超声(US)和核医学技术,常用于乳腺癌评估。而组织病理学(HP)是确认恶性肿瘤的金标准。人工智能(AI)技术在对医学图像进行定量表示方面具有很大的潜力,可以有效地辅助乳腺癌的分割、诊断和预后。在这篇综述中,我们概述了用于乳腺癌的 AI 技术的最新进展,包括 1)通过数据增强来提高图像质量,2)快速检测和分割乳腺病变并诊断恶性肿瘤,3)通过基于 AI 的分类技术进行癌症的生物学特征分析,如分期和亚型分类,4)通过整合多组学数据预测临床结局,如转移、治疗反应和生存。然后,我们总结了可用于帮助训练强大、可推广和可重复的深度学习模型的大型数据库。此外,我们还总结了 AI 在实际应用中面临的挑战,包括数据管理、模型可解释性和实践法规。此外,我们预计 AI 的临床应用将为患者个体化管理提供重要指导。