Suppr超能文献

人工智能支持对乳腺断层合成图像解读的准确性和阅读时间的影响:一项多读者多病例研究。

Impact of artificial intelligence support on accuracy and reading time in breast tomosynthesis image interpretation: a multi-reader multi-case study.

机构信息

Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, 6500 HB Nijmegen, Geert Grooteplein 10, 6525 GA, Post 766, Nijmegen, The Netherlands.

ScreenPoint Medical BV, Toernooiveld 300, 6525 EC, Nijmegen, The Netherlands.

出版信息

Eur Radiol. 2021 Nov;31(11):8682-8691. doi: 10.1007/s00330-021-07992-w. Epub 2021 May 4.

Abstract

OBJECTIVES

Digital breast tomosynthesis (DBT) increases sensitivity of mammography and is increasingly implemented in breast cancer screening. However, the large volume of images increases the risk of reading errors and reading time. This study aims to investigate whether the accuracy of breast radiologists reading wide-angle DBT increases with the aid of an artificial intelligence (AI) support system. Also, the impact on reading time was assessed and the stand-alone performance of the AI system in the detection of malignancies was compared to the average radiologist.

METHODS

A multi-reader multi-case study was performed with 240 bilateral DBT exams (71 breasts with cancer lesions, 70 breasts with benign findings, 339 normal breasts). Exams were interpreted by 18 radiologists, with and without AI support, providing cancer suspicion scores per breast. Using AI support, radiologists were shown examination-based and region-based cancer likelihood scores. Area under the receiver operating characteristic curve (AUC) and reading time per exam were compared between reading conditions using mixed-models analysis of variance.

RESULTS

On average, the AUC was higher using AI support (0.863 vs 0.833; p = 0.0025). Using AI support, reading time per DBT exam was reduced (p < 0.001) from 41 (95% CI = 39-42 s) to 36 s (95% CI = 35- 37 s). The AUC of the stand-alone AI system was non-inferior to the AUC of the average radiologist (+0.007, p = 0.8115).

CONCLUSIONS

Radiologists improved their cancer detection and reduced reading time when evaluating DBT examinations using an AI reading support system.

KEY POINTS

• Radiologists improved their cancer detection accuracy in digital breast tomosynthesis (DBT) when using an AI system for support, while simultaneously reducing reading time. • The stand-alone breast cancer detection performance of an AI system is non-inferior to the average performance of radiologists for reading digital breast tomosynthesis exams. • The use of an AI support system could make advanced and more reliable imaging techniques more accessible and could allow for more cost-effective breast screening programs with DBT.

摘要

目的

数字乳腺断层合成术(DBT)提高了乳房 X 光检查的灵敏度,并且在乳腺癌筛查中越来越多地被应用。然而,大量的图像增加了阅读错误和阅读时间的风险。本研究旨在探讨乳腺放射科医生在人工智能(AI)辅助系统的帮助下,阅读广角 DBT 的准确性是否会提高。此外,还评估了阅读时间的影响,并比较了 AI 系统在检测恶性肿瘤方面的独立性能与平均放射科医生的性能。

方法

进行了一项多读者多病例研究,共纳入 240 例双侧 DBT 检查(71 例有癌症病变的乳房,70 例有良性发现的乳房,339 例正常乳房)。由 18 名放射科医生进行解读,包括有和没有 AI 支持的情况下,对每只乳房提供癌症可疑评分。使用 AI 支持,放射科医生会看到基于检查和基于区域的癌症可能性评分。使用混合模型方差分析比较不同阅读条件下的受试者工作特征曲线下面积(AUC)和每例检查的阅读时间。

结果

平均而言,使用 AI 支持时 AUC 更高(0.863 比 0.833;p = 0.0025)。使用 AI 支持时,每例 DBT 检查的阅读时间减少(p < 0.001),从 41 秒(95%置信区间= 39-42 秒)减少至 36 秒(95%置信区间= 35-37 秒)。独立 AI 系统的 AUC 不劣于平均放射科医生的 AUC(+0.007,p = 0.8115)。

结论

放射科医生在使用 AI 阅读支持系统评估 DBT 检查时,提高了癌症检测的准确性,并减少了阅读时间。

要点

  • 放射科医生在使用 AI 系统辅助时,提高了在数字乳腺断层合成术(DBT)中的癌症检测准确性,同时减少了阅读时间。

  • 独立的 AI 系统在阅读数字乳腺断层合成术检查方面的乳腺癌检测性能不劣于放射科医生的平均性能。

  • 使用 AI 支持系统可以使先进和更可靠的成像技术更容易获得,并可以通过 DBT 实现更具成本效益的乳房筛查计划。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e9d6/8523448/34f2e99c2293/330_2021_7992_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验