Suppr超能文献

估算早期后除极的概率和预测与 1 型长 QT 综合征相关的心律失常风险的基因突变。

Estimating the probability of early afterdepolarizations and predicting arrhythmic risk associated with long QT syndrome type 1 mutations.

机构信息

Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland.

Department of Biomedical Engineering and Institute for Computational Medicine, Johns Hopkins University, Baltimore, Maryland.

出版信息

Biophys J. 2023 Oct 17;122(20):4042-4056. doi: 10.1016/j.bpj.2023.09.001. Epub 2023 Sep 12.

Abstract

Early afterdepolarizations (EADs) are action potential (AP) repolarization abnormalities that can trigger lethal arrhythmias. Simulations using biophysically detailed cardiac myocyte models can reveal how model parameters influence the probability of these cellular arrhythmias; however, such analyses can pose a huge computational burden. We have previously developed a highly simplified approach in which logistic regression models (LRMs) map parameters of complex cell models to the probability of ectopic beats. Here, we extend this approach to predict the probability of EADs (P(EAD)) as a mechanistic metric of arrhythmic risk. We use the LRM to investigate how changes in parameters of the slow-activating delayed rectifier current (I) affect P(EAD) for 17 different long QT syndrome type 1 (LQTS1) mutations. In this LQTS1 clinical arrhythmic risk prediction task, we compared P(EAD) for these 17 mutations with two other recently published model-based arrhythmia risk metrics (AP morphology metric across populations of myocyte models and transmural repolarization prolongation based on a one-dimensional [1D] tissue-level model). These model-based risk metrics yield similar prediction performance; however, each fails to stratify clinical risk for a significant number of the 17 studied LQTS1 mutations. Nevertheless, an interpretable ensemble model using multivariate linear regression built by combining all of these model-based risk metrics successfully predicts the clinical risk of 17 mutations. These results illustrate the potential of computational approaches in arrhythmia risk prediction.

摘要

早期后除极(EADs)是动作电位(AP)复极化异常,可引发致命性心律失常。使用具有详细生物物理特性的心肌细胞模型进行模拟可以揭示模型参数如何影响这些细胞心律失常的概率;然而,此类分析可能会带来巨大的计算负担。我们之前开发了一种高度简化的方法,其中逻辑回归模型(LRM)将复杂细胞模型的参数映射到异位搏动的概率。在这里,我们将这种方法扩展到预测 EAD 的概率(P(EAD)),作为心律失常风险的机制指标。我们使用 LRM 来研究慢激活延迟整流电流(I)参数的变化如何影响 17 种不同的长 QT 综合征 1 型(LQTS1)突变的 P(EAD)。在这个 LQTS1 临床心律失常风险预测任务中,我们将这 17 种突变的 P(EAD)与另外两种最近发表的基于模型的心律失常风险指标(跨心肌细胞模型群体的 AP 形态指标和基于一维[1D]组织水平模型的跨壁复极延长)进行了比较。这些基于模型的风险指标具有相似的预测性能;然而,对于所研究的 17 种 LQTS1 突变中的许多种,每种方法都无法对临床风险进行分层。尽管如此,通过结合所有这些基于模型的风险指标构建的使用多元线性回归的可解释集成模型成功预测了 17 种突变的临床风险。这些结果说明了计算方法在心律失常风险预测中的潜力。

相似文献

本文引用的文献

2
Histopathology of the Conduction System in Long QT Syndrome.长 QT 综合征的传导系统组织病理学。
Fetal Pediatr Pathol. 2022 Dec;41(6):889-903. doi: 10.1080/15513815.2021.2002988. Epub 2021 Nov 12.
10
Echocardiography-Guided Risk Stratification for Long QT Syndrome.超声心动图引导的长 QT 综合征风险分层。
J Am Coll Cardiol. 2020 Dec 15;76(24):2834-2843. doi: 10.1016/j.jacc.2020.10.024.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验