Department of Biomedical Engineering, The Ohio State University, Columbus, OH, United States of America.
Department of Biomedical Engineering and Mechanics, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States of America; Fralin Biomedical Research Institute at Virginia Tech Carilion, Virginia Polytechnic Institute and State University, Roanoke, VA, United States of America.
J Mol Cell Cardiol. 2021 Apr;153:60-71. doi: 10.1016/j.yjmcc.2020.12.008. Epub 2020 Dec 26.
Cardiac action potentials are initiated by sodium ion (Na) influx through voltage-gated Na channels. Na channel gain-of-function (GOF) can arise in inherited conditions due to mutations in the gene encoding the cardiac Na channel, such as Long QT syndrome type 3 (LQT3). LQT3 can be a "concealed" disease, as patients with LQT3-associated mutations can remain asymptomatic until later in life; however, arrhythmias can also arise early in life in LQT3 patients, demonstrating a complex age-associated manifestation. We and others recently demonstrated that cardiac Na channels preferentially localize at the intercalated disc (ID) in adult cardiac tissue, which facilitates ephaptic coupling and formation of intercellular Na nanodomains that regulate pro-arrhythmic early afterdepolarization (EAD) formation in tissue with Na channel GOF. Several properties related to ephaptic coupling vary with age, such as cell size and Na channel and gap junction (GJ) expression and distribution: neonatal cells have immature IDs, with Na channels and GJs primarily diffusively distributed, while adult myocytes have mature IDs with preferentially localized Na channels and GJs. Here, we perform an in silico study varying critical age-dependent parameters to investigate mechanisms underlying age-associated manifestation of Na channel GOF in a model of guinea pig cardiac tissue. Simulations predict that total Na current conductance is a critical factor in action potential duration (APD) prolongation. We find a complex cell size/ Na channel expression relationship: increases in cell size (without concurrent increases in Na channel expression) suppress EAD formation, while increases in Na channel expression (without concurrent increases in cell size) promotes EAD formation. Finally, simulations with neonatal and early age-associated parameters predict normal APD with minimal dependence on intercellular cleft width; however, variability in cellular properties can lead to EADs presenting in early developmental stages. In contrast, for adult-associated parameters, EAD formation is highly dependent on cleft width, consistent with a mechanism underlying the age-associated manifestation of the Na channel GOF.
心肌动作电位由电压门控钠离子(Na)通道通过钠离子内流引发。由于编码心脏 Na 通道的基因突变,遗传性钠离子通道功能获得性(GOF)可导致疾病发生,例如长 QT 综合征 3 型(LQT3)。LQT3 可能是一种“隐匿性”疾病,因为携带 LQT3 相关突变的患者在生命后期可能仍无症状;然而,心律失常也可能在 LQT3 患者的生命早期出现,表现出一种与年龄相关的复杂发病机制。我们和其他人最近的研究表明,心肌 Na 通道在成年心脏组织中优先定位于闰盘(ID),这有利于电突触耦合和细胞间 Na 纳米区的形成,从而调节具有 Na 通道 GOF 的组织中早期后除极(EAD)的形成。与电突触耦合相关的几个特性随年龄而变化,例如细胞大小以及 Na 通道和缝隙连接(GJ)的表达和分布:新生细胞的 ID 不成熟,Na 通道和 GJ 主要弥散分布,而成年心肌细胞的 ID 成熟,Na 通道和 GJ 优先定位。在这里,我们通过改变关键的年龄依赖性参数进行了计算机模拟研究,以研究豚鼠心脏组织中 Na 通道 GOF 与年龄相关的发病机制。模拟预测总 Na 电流电导是动作电位时程(APD)延长的关键因素。我们发现细胞大小/Na 通道表达关系复杂:细胞尺寸增加(Na 通道表达没有相应增加)会抑制 EAD 的形成,而 Na 通道表达增加(细胞尺寸没有相应增加)会促进 EAD 的形成。最后,使用新生儿和早期与年龄相关的参数进行的模拟预测 APD 正常,对细胞间隙宽度的依赖性最小;然而,细胞特性的可变性可能导致 EAD 在早期发育阶段出现。相比之下,对于成年相关参数,EAD 的形成高度依赖于细胞间隙宽度,这与 Na 通道 GOF 与年龄相关的发病机制一致。