Suppr超能文献

心脏组织中早期后去极化驱动的心律失常发生机制。

Mechanism of Arrhythmogenesis Driven by Early After Depolarizations in Cardiac Tissue.

作者信息

Stein Jack, Greene D'Artagnan, Fenton Flavio, Shiferaw Yohannes

机构信息

Department of Physics and Astronomy, California State University, Northridge.

Department of Physics, Georgia Institute of Technology.

出版信息

bioRxiv. 2024 Nov 14:2024.11.14.623585. doi: 10.1101/2024.11.14.623585.

Abstract

Early-after depolarizations (EADs) are changes in the action potential plateau that can lead to cardiac arrhythmia. At the cellular level, these oscillations are irregular and change from beat to beat due to the sensitivity of voltage repolarization to subcellular stochastic processes. However, the behavior of EADs in tissue, where cells are strongly coupled by gap junctions, is less understood. In this study, we develop a computational model of EADs caused by a reduction in the rate of calcium-induced inactivation of the L-type calcium channel. We find that, as inactivation decreases EADs occur with durations varying randomly from beat to beat. In cardiac tissue, however, gap junction coupling between cells dampens these fluctuations, and it is unclear what dictates the formation of EADs. In this study we show that EADs in cardiac tissue can be modeled by the deterministic limit of a stochastic single-cell model. Analysis of this deterministic model reveals that EADs emerge in tissue after an abrupt transition to alternans, where large populations of cells suddenly synchronize, causing EADs on every other beat. We analyze this transition and show that it is due to a discontinuous bifurcation that leads to a large change in the action potential duration in response to very small changes in pacing rate. We further demonstrate that this transition is highly arrhythmogenic, as the sudden onset of EADs in cardiac tissue promotes conduction block and reentry. Our results highlight the importance of EAD alternans in arrhythmogenesis and suggests that ectopic beats are not required.

摘要

早后去极化(EADs)是动作电位平台期的变化,可导致心律失常。在细胞水平上,由于电压复极化对亚细胞随机过程的敏感性,这些振荡是不规则的,且逐搏变化。然而,在细胞通过缝隙连接紧密耦合的组织中,EADs的行为尚不太清楚。在本研究中,我们建立了一个由L型钙通道钙诱导失活速率降低引起的EADs计算模型。我们发现,随着失活减少,EADs出现,其持续时间逐搏随机变化。然而,在心脏组织中,细胞间的缝隙连接耦合会抑制这些波动,并且尚不清楚是什么决定了EADs的形成。在本研究中,我们表明心脏组织中的EADs可以用随机单细胞模型的确定性极限来建模。对该确定性模型的分析表明,EADs在组织中突然转变为交替搏动后出现,此时大量细胞突然同步,导致每隔一次搏动就出现EADs。我们分析了这种转变,并表明这是由于不连续分岔导致动作电位持续时间在起搏速率非常小的变化时发生大的改变。我们进一步证明,这种转变具有高度致心律失常性,因为心脏组织中EADs的突然出现会促进传导阻滞和折返。我们的结果突出了EAD交替搏动在心律失常发生中的重要性,并表明不需要异位搏动。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ecc7/11601420/f2be20a08e3a/nihpp-2024.11.14.623585v1-f0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验