Menotti Laura, Silvello Gianmaria, Atzori Manfredo, Boytcheva Svetla, Ciompi Francesco, Di Nunzio Giorgio Maria, Fraggetta Filippo, Giachelle Fabio, Irrera Ornella, Marchesin Stefano, Marini Niccolò, Müller Henning, Primov Todor
Department of Information Engineering, University of Padua, Padova, Italy.
Information Systems Institute, University of Applied Sciences Western Switzerland, Delémont, Switzerland.
J Pathol Inform. 2023 Aug 22;14:100332. doi: 10.1016/j.jpi.2023.100332. eCollection 2023.
Computational pathology can significantly benefit from ontologies to standardize the employed nomenclature and help with knowledge extraction processes for high-quality annotated image datasets. The end goal is to reach a shared model for digital pathology to overcome data variability and integration problems. Indeed, data annotation in such a specific domain is still an unsolved challenge and datasets cannot be steadily reused in diverse contexts due to heterogeneity issues of the adopted labels, multilingualism, and different clinical practices.
This paper presents the ExaMode ontology, modeling the histopathology process by considering 3 key cancer diseases (colon, cervical, and lung tumors) and celiac disease. The ExaMode ontology has been designed bottom-up in an iterative fashion with continuous feedback and validation from pathologists and clinicians. The ontology is organized into 5 semantic areas that defines an ontological template to model any disease of interest in histopathology.
The ExaMode ontology is currently being used as a common semantic layer in: (i) an entity linking tool for the automatic annotation of medical records; (ii) a web-based collaborative annotation tool for histopathology text reports; and (iii) a software platform for building holistic solutions integrating multimodal histopathology data.
The ontology ExaMode is a key means to store data in a graph database according to the RDF data model. The creation of an RDF dataset can help develop more accurate algorithms for image analysis, especially in the field of digital pathology. This approach allows for seamless data integration and a unified query access point, from which we can extract relevant clinical insights about the considered diseases using SPARQL queries.
计算病理学可从本体论中显著受益,以规范所使用的术语,并帮助高质量注释图像数据集的知识提取过程。最终目标是达成一个数字病理学的共享模型,以克服数据变异性和集成问题。事实上,在这样一个特定领域中的数据标注仍是一个未解决的挑战,并且由于所采用标签的异质性问题、多语言性以及不同的临床实践,数据集无法在不同背景下稳定复用。
本文介绍了ExaMode本体,通过考虑3种关键癌症疾病(结肠癌、宫颈癌和肺癌)以及乳糜泻来对组织病理学过程进行建模。ExaMode本体是以自下而上的方式迭代设计的,不断接受病理学家和临床医生的反馈与验证。该本体被组织成5个语义区域,定义了一个本体模板,用于对组织病理学中任何感兴趣的疾病进行建模。
ExaMode本体目前正被用作以下方面的通用语义层:(i)用于病历自动标注的实体链接工具;(ii)用于组织病理学文本报告的基于网络的协作标注工具;以及(iii)用于构建集成多模态组织病理学数据的整体解决方案的软件平台。
ExaMode本体是根据RDF数据模型在图形数据库中存储数据的关键手段。创建RDF数据集有助于开发更准确的图像分析算法,尤其是在数字病理学领域。这种方法允许无缝数据集成和统一的查询访问点,从中我们可以使用SPARQL查询提取有关所考虑疾病的相关临床见解。