Suppr超能文献

数字病理学中对测量科学的需求。

The need for measurement science in digital pathology.

作者信息

Romanchikova Marina, Thomas Spencer Angus, Dexter Alex, Shaw Mike, Partarrieau Ignacio, Smith Nadia, Venton Jenny, Adeogun Michael, Brettle David, Turpin Robert James

机构信息

National Physical Laboratory, Hampton Road, Teddington, Middlesex TW11 0LW, United Kingdom.

Leeds Teaching Hospitals NHS Trust, St. James's University Hospital, Beckett Street, Leeds, West Yorkshire LS9 7TF, United Kingdom.

出版信息

J Pathol Inform. 2022;13:100157. doi: 10.1016/j.jpi.2022.100157. Epub 2022 Nov 10.

Abstract

BACKGROUND

Pathology services experienced a surge in demand during the COVID-19 pandemic. Digitalisation of pathology workflows can help to increase throughput, yet many existing digitalisation solutions use non-standardised workflows captured in proprietary data formats and processed by black-box software, yielding data of varying quality. This study presents the views of a UK-led expert group on the barriers to adoption and the required input of measurement science to improve current practices in digital pathology.

METHODS

With an aim to support the UK's efforts in digitalisation of pathology services, this study comprised: (1) a review of existing evidence, (2) an online survey of domain experts, and (3) a workshop with 42 representatives from healthcare, regulatory bodies, pharmaceutical industry, academia, equipment, and software manufacturers. The discussion topics included sample processing, data interoperability, image analysis, equipment calibration, and use of novel imaging modalities.

FINDINGS

The lack of data interoperability within the digital pathology workflows hinders data lookup and navigation, according to 80% of attendees. All participants stressed the importance of integrating imaging and non-imaging data for diagnosis, while 80% saw data integration as a priority challenge. 90% identified the benefits of artificial intelligence and machine learning, but identified the need for training and sound performance metrics.Methods for calibration and providing traceability were seen as essential to establish harmonised, reproducible sample processing, and image acquisition pipelines. Vendor-neutral data standards were seen as a "must-have" for providing meaningful data for downstream analysis. Users and vendors need good practice guidance on evaluation of uncertainty, fitness-for-purpose, and reproducibility of artificial intelligence/machine learning tools. All of the above needs to be accompanied by an upskilling of the pathology workforce.

CONCLUSIONS

Digital pathology requires interoperable data formats, reproducible and comparable laboratory workflows, and trustworthy computer analysis software. Despite high interest in the use of novel imaging techniques and artificial intelligence tools, their adoption is slowed down by the lack of guidance and evaluation tools to assess the suitability of these techniques for specific clinical question. Measurement science expertise in uncertainty estimation, standardisation, reference materials, and calibration can help establishing reproducibility and comparability between laboratory procedures, yielding high quality data and providing higher confidence in diagnosis.

摘要

背景

在新冠疫情期间,病理服务需求激增。病理工作流程的数字化有助于提高通量,但许多现有的数字化解决方案使用以专有数据格式捕获并由黑箱软件处理的非标准化工作流程,产生质量参差不齐的数据。本研究展示了一个由英国牵头的专家组对采用数字化的障碍以及测量科学为改进当前数字病理实践所需投入的看法。

方法

为支持英国在病理服务数字化方面的努力,本研究包括:(1)对现有证据的回顾,(2)对领域专家的在线调查,以及(3)与来自医疗保健、监管机构、制药行业、学术界、设备和软件制造商的42名代表举行的研讨会。讨论主题包括样本处理、数据互操作性、图像分析、设备校准以及新型成像模式的使用。

研究结果

80%的与会者表示,数字病理工作流程中缺乏数据互操作性阻碍了数据查找和导航。所有参与者都强调了整合成像和非成像数据用于诊断的重要性,而80%的人将数据整合视为首要挑战。90%的人认识到人工智能和机器学习的好处,但也认识到需要培训和完善的性能指标。校准和提供可追溯性的方法被视为建立统一、可重复的样本处理和图像采集流程的关键。供应商中立的数据标准被视为为下游分析提供有意义数据的“必备条件”。用户和供应商需要关于人工智能/机器学习工具的不确定性评估、适用性和可重复性评估的良好实践指南。上述所有需求都需要伴随着病理工作人员技能的提升。

结论

数字病理需要可互操作的数据格式、可重复和可比的实验室工作流程以及值得信赖的计算机分析软件。尽管对使用新型成像技术和人工智能工具兴趣浓厚,但由于缺乏评估这些技术对特定临床问题适用性的指导和评估工具,其采用速度放缓。测量科学在不确定性估计、标准化、参考材料和校准方面的专业知识有助于建立实验室程序之间的可重复性和可比性,产生高质量数据并提高诊断的可信度。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2d35/9808018/88472956a942/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验