文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

肺癌预后相关潜在靶基因的生物信息学分析与筛选

Bioinformatics Analysis and Screening of Potential Target Genes Related to the Lung Cancer Prognosis.

作者信息

Huang Ping, Gu Yinfang, Guo Longhua, Zou Xiaofang, Yi Lilan, Wu Guowu

出版信息

Med Princ Pract. 2023 Sep 14:1. doi: 10.1159/000533891.


DOI:10.1159/000533891
PMID:37708874
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12065997/
Abstract

OBJECTIVE: Several genes have been validated as molecular targets for gene therapy in lung cancer. We screened target genes that affect survival of patients with lung cancer. METHODS: Data on gene expression in normal lung tissues/lung adenocarcinoma (LUAD) samples were acquired from Genotype-Tissue Expression (GTEx)/The Cancer Genome Atlas (TCGA) databases and merged to expand the sample size, followed by differential analysis of the merged expression data and acquisition of differentially expressed genes. Survival and simple Cox analyses were used to screen for genes affecting LUAD survival. Protein-protein interaction/multivariable Cox analyses were utilized, and a risk model was established. Candidate genes expression levels in cancer/paracancerous tissues of lung cancer patients, and BEAS-2B/A549/HCC95 cells were measured by RT-qPCR/Western blot. Survival analysis of candidate genes was conducted in LUAD samples collected from TCGA. RESULTS: Among 947 genes differentially expressed in LUAD, 151 were correlated with patient survival, and 116 might act as risk factors for LUAD. The 7 identified candidate genes (TOP2A, TK1, KIF4A, ANLN, KIF2C, ASF1B, CCNB1) were high-risk genes playing possible roles in LUAD. These genes were differentially expressed in lung cancer and were associated with TNM stages (III - IV)/differentiation grade/lymph node metastasis/distant metastasis, which affected lung cancer patient survival. CONCLUSION: P2A, TK1, KIF4A, ANLN, KIF2C, ASF1B and CCNB1 were highly-expressed in LUAD/lung squamous cell carcinoma (LUSC) and correlated with LUAD patient survival. This study contributes to better understanding of the prognostic regulation mechanism in LUAD and the screening of target genes for clinical treatment.

摘要

目的:已有多个基因被确认为肺癌基因治疗的分子靶点。我们筛选了影响肺癌患者生存的靶基因。 方法:从基因型-组织表达(GTEx)/癌症基因组图谱(TCGA)数据库获取正常肺组织/肺腺癌(LUAD)样本中的基因表达数据并合并以扩大样本量,随后对合并后的表达数据进行差异分析并获取差异表达基因。采用生存分析和简单Cox分析筛选影响LUAD生存的基因。利用蛋白质-蛋白质相互作用/多变量Cox分析,建立风险模型。通过RT-qPCR/蛋白质免疫印迹法检测肺癌患者癌组织/癌旁组织以及BEAS-2B/A549/HCC95细胞中候选基因的表达水平。对从TCGA收集的LUAD样本进行候选基因的生存分析。 结果:在LUAD中差异表达的947个基因中,151个与患者生存相关,116个可能是LUAD的危险因素。鉴定出的7个候选基因(TOP2A、TK1、KIF4A、ANLN、KIF2C、ASF1B、CCNB1)是在LUAD中可能发挥作用的高危基因。这些基因在肺癌中差异表达,并与TNM分期(III-IV期)/分化程度/淋巴结转移/远处转移相关,影响肺癌患者的生存。 结论:P2A、TK1、KIF4A、ANLN、KIF2C、ASF1B和CCNB1在LUAD/肺鳞状细胞癌(LUSC)中高表达,与LUAD患者生存相关。本研究有助于更好地理解LUAD的预后调控机制及临床治疗靶基因的筛选。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ef7/12065997/9469b646001d/mpp-2023-0000-0000-533891_F07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ef7/12065997/2f3f3b7b90d6/mpp-2023-0000-0000-533891_F01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ef7/12065997/dc2697d5865f/mpp-2023-0000-0000-533891_F02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ef7/12065997/866f059f9236/mpp-2023-0000-0000-533891_F03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ef7/12065997/99765b1341c8/mpp-2023-0000-0000-533891_F04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ef7/12065997/e1b0128377a7/mpp-2023-0000-0000-533891_F05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ef7/12065997/07b48434671b/mpp-2023-0000-0000-533891_F06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ef7/12065997/9469b646001d/mpp-2023-0000-0000-533891_F07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ef7/12065997/2f3f3b7b90d6/mpp-2023-0000-0000-533891_F01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ef7/12065997/dc2697d5865f/mpp-2023-0000-0000-533891_F02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ef7/12065997/866f059f9236/mpp-2023-0000-0000-533891_F03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ef7/12065997/99765b1341c8/mpp-2023-0000-0000-533891_F04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ef7/12065997/e1b0128377a7/mpp-2023-0000-0000-533891_F05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ef7/12065997/07b48434671b/mpp-2023-0000-0000-533891_F06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ef7/12065997/9469b646001d/mpp-2023-0000-0000-533891_F07.jpg

相似文献

[1]
Bioinformatics Analysis and Screening of Potential Target Genes Related to the Lung Cancer Prognosis.

Med Princ Pract. 2023-9-14

[2]
LINC00628 is differentially expressed between lung adenocarcinoma and squamous cell carcinoma and is associated with the prognosis of NSCLC.

Oncol Lett. 2022-2

[3]
Identification of KRT80 as a Novel Prognostic and Predictive Biomarker of Human Lung Adenocarcinoma via Bioinformatics Approaches.

Comb Chem High Throughput Screen. 2024-6-20

[4]
Identification of CDT1 as a prognostic marker in human lung adenocarcinoma using bioinformatics approaches.

PeerJ. 2023

[5]
[Identification of differentially expressed genes between lung adenocarcinoma and squamous cell carcinoma using transcriber signature analysis].

Nan Fang Yi Ke Da Xue Xue Bao. 2019-6-30

[6]
Screening of Key Prognosis Genes of Lung Adenocarcinoma Based on Expression Analysis on TCGA Database.

J Oncol. 2022-12-26

[7]
Identifying diagnostic markers and establishing prognostic model for lung cancer based on lung cancer-derived exosomal genes.

Cancer Biomark. 2025-2

[8]
Comprehensive Profiling of Genomic and Transcriptomic Differences between Risk Groups of Lung Adenocarcinoma and Lung Squamous Cell Carcinoma.

J Pers Med. 2021-2-23

[9]
Identification of KIF4A and its effect on the progression of lung adenocarcinoma based on the bioinformatics analysis.

Biosci Rep. 2021-1-29

[10]
Elevated TOP2A and UBE2C expressions correlate with poor prognosis in patients with surgically resected lung adenocarcinoma: a study based on immunohistochemical analysis and bioinformatics.

J Cancer Res Clin Oncol. 2020-2-26

引用本文的文献

[1]
Identification of cellular senescence-associated genes for predicting the diagnosis, prognosis and immunotherapy response in lung adenocarcinoma via a 113-combination machine learning framework.

Discov Oncol. 2025-4-1

[2]
Multiomic machine learning on lactylation for molecular typing and prognosis of lung adenocarcinoma.

Sci Rep. 2025-1-24

[3]
Multifaceted bioinformatic analysis of m6A-related ferroptosis and its link with gene signatures and tumour-infiltrating immune cells in gliomas.

J Cell Mol Med. 2024-9

本文引用的文献

[1]
KIF2C accelerates the development of non-small cell lung cancer and is suppressed by miR-186-3p via the AKT-GSK3β-β-catenin pathway.

Sci Rep. 2023-5-4

[2]
Advances in lung cancer screening and early detection.

Cancer Biol Med. 2022-5-11

[3]
Identification of a Novel Theranostic Signature of Metabolic and Immune-Inflammatory Dysregulation in Myocardial Infarction, and the Potential Therapeutic Properties of Ovatodiolide, a Diterpenoid Derivative.

Int J Mol Sci. 2022-1-24

[4]
A lepidic gene signature predicts patient prognosis and sensitivity to immunotherapy in lung adenocarcinoma.

Genome Med. 2022-1-12

[5]
Identification and Integrate Analysis of Key Biomarkers for Diagnosis and Prognosis of Non-Small Cell Lung Cancer Based on Bioinformatics Analysis.

Technol Cancer Res Treat. 2021

[6]
ANLN Regulated by miR-30a-5p Mediates Malignant Progression of Lung Adenocarcinoma.

Comput Math Methods Med. 2021

[7]
ASF1B Promotes Oncogenesis in Lung Adenocarcinoma and Other Cancer Types.

Front Oncol. 2021-9-9

[8]
UBE2T promotes autophagy via the p53/AMPK/mTOR signaling pathway in lung adenocarcinoma.

J Transl Med. 2021-8-30

[9]
Integrated bioinformatics analysis reveals CDK1 and PLK1 as potential therapeutic targets of lung adenocarcinoma.

Medicine (Baltimore). 2021-8-13

[10]
Lung cancer.

Lancet. 2021-8-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索