Suppr超能文献

基于高选择性分子印迹聚合物纳米粒子(MIP NPs)的微流控气体传感器用于检测四氢大麻酚(THC)。

Highly selective molecularly imprinted polymer nanoparticles (MIP NPs)-based microfluidic gas sensor for tetrahydrocannabinol (THC) detection.

机构信息

School of Engineering, University of British Columbia, Kelowna, BC, Canada; School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada.

School of Engineering and Computer Science, University of Victoria, Victoria, BC, Canada.

出版信息

Anal Chim Acta. 2023 Oct 16;1278:341749. doi: 10.1016/j.aca.2023.341749. Epub 2023 Aug 22.

Abstract

A highly selective microfluidic integrated metal oxide gas sensor for THC detection is reported based on MIP nanoparticles (MIP NPs). We synthesized MIP NPs with THC recognition sites and coated them on a 3D-printed microfluidic channel surface. The sensitivity and selectivity of coated microfluidic integrated gas sensors were evaluated by exposure to THC, cannabidiol (CBD), methanol, and ethanol analytes in 300-700 ppm at 300 °C. For comparison, reference signals were obtained from a microfluidic channel coated with nonimprinted polymers (NIP NPs). The MIP and NIP NPs were characterized using scanning electron microscopy (SEM) and Raman spectroscopy. MIP and NIP NPs channels response data were combined and classified with 96.3% accuracy using the Fine KNN classification model in MATLAB R2021b Classification Learner App. Compared to the MIP NPs coated channel, the NIP NPs channel had poor selectivity towards THC, demonstrating that the THC recognition sites in the MIP structure enabled selective detection of THC. The findings demonstrated that the recognition sites of MIP NPs properly captured THC molecules, enabling the selective detection of THC compared to CBD, methanol, and ethanol.

摘要

本文报道了一种基于分子印迹纳米粒子(MIP NPs)的用于 THC 检测的高选择性微流控集成金属氧化物气体传感器。我们合成了具有 THC 识别位点的 MIP NPs,并将其涂覆在 3D 打印微流道表面上。通过在 300°C 下将涂覆的微流控集成气体传感器暴露于 300-700 ppm 的 THC、大麻二酚 (CBD)、甲醇和乙醇分析物来评估其灵敏度和选择性。为了进行比较,从涂覆有非印迹聚合物 (NIP NPs) 的微流道获得了参考信号。使用扫描电子显微镜 (SEM) 和拉曼光谱对 MIP 和 NIP NPs 进行了表征。使用 MATLAB R2021b Classification Learner App 中的 Fine KNN 分类模型对 MIP 和 NIP NPs 通道的响应数据进行了组合和分类,准确率为 96.3%。与涂覆有 MIP NPs 的通道相比,NIP NPs 通道对 THC 的选择性较差,表明 MIP 结构中的 THC 识别位点能够选择性地检测 THC。研究结果表明,MIP NPs 的识别位点能够适当捕获 THC 分子,从而能够与 CBD、甲醇和乙醇相比选择性地检测 THC。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验