Suppr超能文献

深度学习模型预测组织学中与 Epstein-Barr 病毒相关的胃癌。

Deep learning model to predict Epstein-Barr virus associated gastric cancer in histology.

机构信息

Genome & Health Data Lab, School of Public Health, Seoul National University, Seoul, Republic of Korea.

Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea.

出版信息

Sci Rep. 2022 Nov 2;12(1):18466. doi: 10.1038/s41598-022-22731-x.

Abstract

The detection of Epstein-Barr virus (EBV) in gastric cancer patients is crucial for clinical decision making, as it is related with specific treatment responses and prognoses. Despite its importance, the limited medical resources preclude universal EBV testing. Herein, we propose a deep learning-based EBV prediction method from H&E-stained whole-slide images (WSI). Our model was developed using 319 H&E stained WSI (26 EBV positive; TCGA dataset) from the Cancer Genome Atlas, and 108 WSI (8 EBV positive; ISH dataset) from an independent institution. Our deep learning model, EBVNet consists of two sequential components: a tumor classifier and an EBV classifier. We visualized the learned representation by the classifiers using UMAP. We externally validated the model using 60 additional WSI (7 being EBV positive; HGH dataset). We compared the model's performance with those of four pathologists. EBVNet achieved an AUPRC of 0.65, whereas the four pathologists yielded a mean AUPRC of 0.41. Moreover, EBVNet achieved an negative predictive value, sensitivity, specificity, precision, and F1-score of 0.98, 0.86, 0.92, 0.60, and 0.71, respectively. Our proposed model is expected to contribute to prescreen patients for confirmatory testing, potentially to save test-related cost and labor.

摘要

检测胃癌患者中的 Epstein-Barr 病毒(EBV)对于临床决策至关重要,因为它与特定的治疗反应和预后相关。尽管其重要性,但有限的医疗资源排除了 EBV 的普遍检测。在此,我们提出了一种基于深度学习的从 H&E 染色全切片图像(WSI)中预测 EBV 的方法。我们的模型是使用来自癌症基因组图谱的 319 张 H&E 染色 WSI(26 例 EBV 阳性;TCGA 数据集)和来自独立机构的 108 张 WSI(8 例 EBV 阳性;ISH 数据集)开发的。我们的深度学习模型 EBVNet 由两个连续的组件组成:肿瘤分类器和 EBV 分类器。我们使用 UMAP 可视化分类器学习的表示。我们使用 60 张额外的 WSI(7 张 EBV 阳性;HGH 数据集)对模型进行外部验证。我们将模型的性能与四位病理学家进行了比较。EBVNet 的 AUC 为 0.65,而四位病理学家的平均 AUC 为 0.41。此外,EBVNet 的阴性预测值、敏感性、特异性、精度和 F1 分数分别为 0.98、0.86、0.92、0.60 和 0.71。我们提出的模型有望有助于为确认性测试筛选患者,从而可能节省与测试相关的成本和劳动力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9562/9630260/2a3dac23b9bf/41598_2022_22731_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验