Suppr超能文献

利用新闻标题剖析新闻传播的障碍。

Profiling the barriers to the spreading of news using news headlines.

作者信息

Sittar Abdul, Mladenić Dunja, Grobelnik Marko

机构信息

Information and Communication Technologies, Jožef Stefan International Postgraduate School (IPS), Ljubljana, Slovenia.

Department for Artificial Intelligence - E3, Jozef Stefan Institute, Ljubljana, Slovenia.

出版信息

Front Artif Intell. 2023 Aug 29;6:1225213. doi: 10.3389/frai.2023.1225213. eCollection 2023.

Abstract

News headlines can be a good data source for detecting the barriers to the spreading of news in news media, which can be useful in many real-world applications. In this study, we utilize semantic knowledge through the inference-based model COMET and the sentiments of news headlines for barrier classification. We consider five barriers, including cultural, economic, political, linguistic, and geographical and different types of news headlines, including health, sports, science, recreation, games, homes, society, shopping, computers, and business. To that end, we collect and label the news headlines automatically for the barriers using the metadata of news publishers. Then, we utilize the extracted common-sense inferences and sentiments as features to detect the barriers to the spreading of news. We compare our approach to the classical text classification methods, deep learning, and transformer-based methods. The results show that (1) the inference-based semantic knowledge provides distinguishable inferences across the 10 categories that can increase the effectiveness and enhance the speed of the classification model; (2) the news of positive sentiments cross the political barrier, whereas the news of negative sentiments cross the cultural, economic, linguistic, and geographical barriers; (3) the proposed approach using inferences-based semantic knowledge and sentiment improves performance compared with using only headlines in barrier classification. The average F1-score for 4 out of 5 barriers has significantly improved as follows: for cultural barriers from 0.41 to 0.47, for economic barriers from 0.39 to 0.55, for political barriers from 0.59 to 0.70 and for geographical barriers from 0.59 to 0.76.

摘要

新闻标题可以作为检测新闻媒体中新闻传播障碍的良好数据源,这在许多实际应用中都很有用。在本研究中,我们通过基于推理的模型COMET利用语义知识以及新闻标题的情感进行障碍分类。我们考虑了五种障碍,包括文化、经济、政治、语言和地理障碍,以及不同类型的新闻标题,包括健康、体育、科学、娱乐、游戏、家居、社会、购物、计算机和商业。为此,我们使用新闻发布者的元数据自动收集和标记新闻标题的障碍信息。然后,我们利用提取的常识推理和情感作为特征来检测新闻传播的障碍。我们将我们的方法与经典文本分类方法、深度学习方法和基于Transformer的方法进行比较。结果表明:(1)基于推理的语义知识在10个类别中提供了可区分的推理,这可以提高分类模型的有效性并加快其速度;(2)积极情感的新闻跨越政治障碍,而消极情感的新闻跨越文化、经济、语言和地理障碍;(3)与仅使用标题进行障碍分类相比,使用基于推理的语义知识和情感的提议方法提高了性能。5种障碍中有4种障碍的平均F1分数有显著提高,如下所示:文化障碍从0.41提高到0.47,经济障碍从0.39提高到0.55,政治障碍从0.59提高到0.70,地理障碍从0.59提高到0.76。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验