Suppr超能文献

基于与二硫键凋亡、铜死亡和铁死亡相关基因的机器学习和 WGCNA 双重分析构建和验证乳腺癌预后模型。

Machine learning- and WGCNA-mediated double analysis based on genes associated with disulfidptosis, cuproptosis and ferroptosis for the construction and validation of the prognostic model for breast cancer.

机构信息

Department of General Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, Nantong, 226001, China.

Department of Biochemistry, Medical College, Nantong University, Nantong, 226001, China.

出版信息

J Cancer Res Clin Oncol. 2023 Dec;149(18):16511-16523. doi: 10.1007/s00432-023-05378-7. Epub 2023 Sep 15.

Abstract

BACKGROUND

Disulfidptosis, a recently discovered cellular death mechanism, has not been extensively studied in relation to breast cancer (BC). Specifically, no previous research has integrated disulfidptosis-related genes (DRGs), cuproptosis-related genes (CRGs), and ferroptosis-related genes (FRGs) to construct a prognostic signature for BC.

METHODS

DRGs, CRGs and FRGs with prognostic potential were identified through Cox regression analysis. A predictive model was constructed by intersecting the core genes obtained from unsupervised cluster analysis and weighted correlation network analysis (WGCNA). Differences in chemotherapy drug sensitivity, immune checkpoint levels were analyzed according to different risk score groups. The expression of the core disulfidptosis gene, SLC7A11, was analyzed using immunofluorescence.

RESULTS

Single-cell RNA sequencing analysis revealed differential expression of DRGs in the BC tumor microenvironment. We developed a prognostic model, consisting of six genes, based on machine learning which included unsupervised cluster analysis and Lasso-Cox analysis. An internal training set and a validation set, both derived from the Cancer Genome Atlas-Breast Cancer (TCGA-BRCA) database, GSE20685 and GSE42568 as external validation sets all verified the model's validity. The low-risk group exhibited increased sensitivity to paclitaxel. Additionally, the high-risk group demonstrated significantly higher expression of tumor mutation burden and microsatellite instability compared to the low-risk group. A nomogram confirmed that the risk score can be an independent risk factor for BC. Notably, our findings highlighted the impact of SLC7A11 on the BC tumor microenvironment. Immunofluorescence analysis revealed significantly higher expression of SLC7A11 in BC tissues compared to paracancerous tissues.

CONCLUSION

Multiplex analysis based on DRGs, CRGs and FRGs correlated strongly with BC, providing new insights for developing clinical prognostic tools and designing immunotherapy regimens for BC patients.

摘要

背景

二硫键凋亡是一种新发现的细胞死亡机制,目前尚未在乳腺癌(BC)中广泛研究。具体来说,以前没有研究将二硫键凋亡相关基因(DRGs)、铜死亡相关基因(CRGs)和铁死亡相关基因(FRGs)整合到用于构建 BC 预后特征的模型中。

方法

通过 Cox 回归分析确定具有预后潜力的 DRGs、CRGs 和 FRGs。通过无监督聚类分析和加权相关网络分析(WGCNA)获得的核心基因的交集构建预测模型。根据不同的风险评分组分析化疗药物敏感性和免疫检查点水平的差异。使用免疫荧光分析核心二硫键凋亡基因 SLC7A11 的表达。

结果

单细胞 RNA 测序分析显示 DRGs 在 BC 肿瘤微环境中的差异表达。我们基于机器学习开发了一个预后模型,该模型由 6 个基因组成,包括无监督聚类分析和 Lasso-Cox 分析。内部训练集和验证集均来自癌症基因组图谱-乳腺癌(TCGA-BRCA)数据库,GSE20685 和 GSE42568 作为外部验证集均验证了模型的有效性。低风险组对紫杉醇的敏感性增加。此外,与低风险组相比,高风险组的肿瘤突变负担和微卫星不稳定性表达显著更高。列线图证实风险评分可以作为 BC 的独立危险因素。值得注意的是,我们的研究结果强调了 SLC7A11 对 BC 肿瘤微环境的影响。免疫荧光分析显示 BC 组织中 SLC7A11 的表达明显高于癌旁组织。

结论

基于 DRGs、CRGs 和 FRGs 的多组学分析与 BC 密切相关,为开发 BC 临床预后工具和设计 BC 患者免疫治疗方案提供了新的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验