文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用高通量 p53 结合蛋白 1(53BP1)assay 进行纳米材料遗传毒性评价。

Nanomaterial genotoxicity evaluation using the high-throughput p53-binding protein 1 (53BP1) assay.

机构信息

CEA, CNRS, IRIG, SyMMES-CIBEST, Univ. Grenoble Alpes, Grenoble, France.

National Research Council, Institute of Science, Technology and Sustainability for Ceramic Materials ISSMC-CNR (Former ISTEC-CNR), Faenza, Italy.

出版信息

PLoS One. 2023 Sep 15;18(9):e0288737. doi: 10.1371/journal.pone.0288737. eCollection 2023.


DOI:10.1371/journal.pone.0288737
PMID:37713377
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10503773/
Abstract

Toxicity evaluation of engineered nanomaterials is challenging due to the ever increasing number of materials and because nanomaterials (NMs) frequently interfere with commonly used assays. Hence, there is a need for robust, high-throughput assays with which to assess their hazard potential. The present study aimed at evaluating the applicability of a genotoxicity assay based on the immunostaining and foci counting of the DNA repair protein 53BP1 (p53-binding protein 1), in a high-throughput format, for NM genotoxicity assessment. For benchmarking purposes, we first applied the assay to a set of eight known genotoxic agents, as well as X-ray irradiation (1 Gy). Then, a panel of NMs and nanobiomaterials (NBMs) was evaluated with respect to their impact on cell viability and genotoxicity, and to their potential to induce reactive oxygen species (ROS) production. The genotoxicity recorded using the 53BP1 assay was confirmed using the micronucleus assay, also scored via automated (high-throughput) microscopy. The 53BP1 assay successfully identified genotoxic compounds on the HCT116 human intestinal cell line. None of the tested NMs showed any genotoxicity using the 53BP1 assay, except the positive control consisting in (CoO)(NiO) NMs, while only TiO2 NMs showed positive outcome in the micronucleus assay. Only Fe3O4 NMs caused significant elevation of ROS, not correlated to DNA damage. Therefore, owing to its adequate predictivity of the genotoxicity of most of the tested benchmark substance and its ease of implementation in a high throughput format, the 53BP1 assay could be proposed as a complementary high-throughput screening genotoxicity assay, in the context of the development of New Approach Methodologies.

摘要

由于工程纳米材料的数量不断增加,而且纳米材料(NMs)经常干扰常用的检测方法,因此对其进行毒性评估具有挑战性。因此,需要使用稳健、高通量的检测方法来评估其危害潜力。本研究旨在评估一种基于免疫染色和 DNA 修复蛋白 53BP1(p53 结合蛋白 1)焦点计数的遗传毒性检测方法在高通量格式下用于 NM 遗传毒性评估的适用性。为了基准测试的目的,我们首先将该检测方法应用于一组八种已知的遗传毒性剂,以及 X 射线照射(1 Gy)。然后,评估了一组纳米材料和纳米生物材料(NBMs)对细胞活力和遗传毒性的影响,以及它们诱导活性氧(ROS)产生的潜力。使用 53BP1 检测方法记录的遗传毒性通过微核检测得到证实,也通过自动化(高通量)显微镜进行评分。53BP1 检测方法成功地在 HCT116 人肠细胞系上识别出遗传毒性化合物。除了由(CoO)(NiO)纳米颗粒组成的阳性对照外,测试的纳米颗粒中没有任何一种表现出遗传毒性,而只有 TiO2 纳米颗粒在微核检测中表现出阳性结果。只有 Fe3O4 纳米颗粒会导致 ROS 显著升高,与 DNA 损伤无关。因此,由于其对大多数测试基准物质遗传毒性的充分预测性及其在高通量格式下易于实施,53BP1 检测方法可以作为一种补充性的高通量遗传毒性筛选检测方法,在新方法开发的背景下。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b8c/10503773/32ebd7d124e2/pone.0288737.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b8c/10503773/837b7c506d99/pone.0288737.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b8c/10503773/4bfdb31bb9dc/pone.0288737.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b8c/10503773/679d6b6bd36e/pone.0288737.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b8c/10503773/eea062b6bc53/pone.0288737.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b8c/10503773/61965173b3b6/pone.0288737.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b8c/10503773/01e58426837e/pone.0288737.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b8c/10503773/32ebd7d124e2/pone.0288737.g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b8c/10503773/837b7c506d99/pone.0288737.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b8c/10503773/4bfdb31bb9dc/pone.0288737.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b8c/10503773/679d6b6bd36e/pone.0288737.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b8c/10503773/eea062b6bc53/pone.0288737.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b8c/10503773/61965173b3b6/pone.0288737.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b8c/10503773/01e58426837e/pone.0288737.g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b8c/10503773/32ebd7d124e2/pone.0288737.g007.jpg

相似文献

[1]
Nanomaterial genotoxicity evaluation using the high-throughput p53-binding protein 1 (53BP1) assay.

PLoS One. 2023

[2]
Hazard Assessment of Benchmark Metal-Based Nanomaterials Through a Set of In Vitro Genotoxicity Assays.

Adv Exp Med Biol. 2022

[3]
New methodological developments for testing the in vitro genotoxicity of nanomaterials: Comparison of 2D and 3D HepaRG liver cell models and classical and high throughput comet assay formats.

Chemosphere. 2024-2

[4]
An in vitro assessment of panel of engineered nanomaterials using a human renal cell line: cytotoxicity, pro-inflammatory response, oxidative stress and genotoxicity.

BMC Nephrol. 2013-4-25

[5]
A unified in silico model based on perturbation theory for assessing the genotoxicity of metal oxide nanoparticles.

Chemosphere. 2019-11-27

[6]
Investigation of the genotoxicity of digested titanium dioxide nanomaterials in human intestinal cells.

Food Chem Toxicol. 2022-3

[7]
In Vitro Approaches for Assessing the Genotoxicity of Nanomaterials.

Methods Mol Biol. 2019

[8]
Genotoxicity testing of different surface-functionalized SiO, ZrO and silver nanomaterials in 3D human bronchial models.

Arch Toxicol. 2017-6-22

[9]
Micronuclei Detection by Flow Cytometry as a High-Throughput Approach for the Genotoxicity Testing of Nanomaterials.

Nanomaterials (Basel). 2019-11-24

[10]
High-Content Screening for Assessing Nanomaterial Toxicity.

J Nanosci Nanotechnol. 2015-2

引用本文的文献

[1]
On the lifespan of - impact of iron (nanomaterial and salt) on aging.

Aging (Albany NY). 2024-10-24

[2]
Iron Oxide (Magnetite)-Based Nanobiomaterial with Medical Applications-Environmental Hazard Assessment Using Terrestrial Model Species.

J Xenobiot. 2024-2-22

本文引用的文献

[1]
Nanomedicine-based commercial formulations: current developments and future prospects.

J Pharm Investig. 2023

[2]
Environmental Hazards of Nanobiomaterials (Hydroxyapatite-Based NMs)-A Case Study with -Effects from Long Term Exposure.

Toxics. 2022-11-18

[3]
Genotoxicity testing of nanomaterials.

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022-11

[4]
Pre-validation of a reporter gene assay for oxidative stress for the rapid screening of nanobiomaterials.

Front Toxicol. 2022-9-5

[5]
Changes of physico-chemical properties of nano-biomaterials by digestion fluids affect the physiological properties of epithelial intestinal cells and barrier models.

Part Fibre Toxicol. 2022-7-19

[6]
Nanoparticle entry into cells; the cell biology weak link.

Adv Drug Deliv Rev. 2022-9

[7]
Intracellular GSH/GST antioxidants system change as an earlier biomarker for toxicity evaluation of iron oxide nanoparticles.

NanoImpact. 2021-7

[8]
Myelin-specific T cells carry and release magnetite PGLA-PEG COOH nanoparticles in the mouse central nervous system.

RSC Adv. 2018-1-3

[9]
Superparamagnetic Iron Oxide Nanoparticles Induce Apoptosis in HT-29 Cells by Stimulating Oxidative Stress and Damaging DNA.

Biol Trace Elem Res. 2023-3

[10]
Ultrasmall iron oxide nanoparticles cause significant toxicity by specifically inducing acute oxidative stress to multiple organs.

Part Fibre Toxicol. 2022-3-29

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索