CEA, CNRS, IRIG, SyMMES-CIBEST, Univ. Grenoble Alpes, Grenoble, France.
National Research Council, Institute of Science, Technology and Sustainability for Ceramic Materials ISSMC-CNR (Former ISTEC-CNR), Faenza, Italy.
PLoS One. 2023 Sep 15;18(9):e0288737. doi: 10.1371/journal.pone.0288737. eCollection 2023.
Toxicity evaluation of engineered nanomaterials is challenging due to the ever increasing number of materials and because nanomaterials (NMs) frequently interfere with commonly used assays. Hence, there is a need for robust, high-throughput assays with which to assess their hazard potential. The present study aimed at evaluating the applicability of a genotoxicity assay based on the immunostaining and foci counting of the DNA repair protein 53BP1 (p53-binding protein 1), in a high-throughput format, for NM genotoxicity assessment. For benchmarking purposes, we first applied the assay to a set of eight known genotoxic agents, as well as X-ray irradiation (1 Gy). Then, a panel of NMs and nanobiomaterials (NBMs) was evaluated with respect to their impact on cell viability and genotoxicity, and to their potential to induce reactive oxygen species (ROS) production. The genotoxicity recorded using the 53BP1 assay was confirmed using the micronucleus assay, also scored via automated (high-throughput) microscopy. The 53BP1 assay successfully identified genotoxic compounds on the HCT116 human intestinal cell line. None of the tested NMs showed any genotoxicity using the 53BP1 assay, except the positive control consisting in (CoO)(NiO) NMs, while only TiO2 NMs showed positive outcome in the micronucleus assay. Only Fe3O4 NMs caused significant elevation of ROS, not correlated to DNA damage. Therefore, owing to its adequate predictivity of the genotoxicity of most of the tested benchmark substance and its ease of implementation in a high throughput format, the 53BP1 assay could be proposed as a complementary high-throughput screening genotoxicity assay, in the context of the development of New Approach Methodologies.
由于工程纳米材料的数量不断增加,而且纳米材料(NMs)经常干扰常用的检测方法,因此对其进行毒性评估具有挑战性。因此,需要使用稳健、高通量的检测方法来评估其危害潜力。本研究旨在评估一种基于免疫染色和 DNA 修复蛋白 53BP1(p53 结合蛋白 1)焦点计数的遗传毒性检测方法在高通量格式下用于 NM 遗传毒性评估的适用性。为了基准测试的目的,我们首先将该检测方法应用于一组八种已知的遗传毒性剂,以及 X 射线照射(1 Gy)。然后,评估了一组纳米材料和纳米生物材料(NBMs)对细胞活力和遗传毒性的影响,以及它们诱导活性氧(ROS)产生的潜力。使用 53BP1 检测方法记录的遗传毒性通过微核检测得到证实,也通过自动化(高通量)显微镜进行评分。53BP1 检测方法成功地在 HCT116 人肠细胞系上识别出遗传毒性化合物。除了由(CoO)(NiO)纳米颗粒组成的阳性对照外,测试的纳米颗粒中没有任何一种表现出遗传毒性,而只有 TiO2 纳米颗粒在微核检测中表现出阳性结果。只有 Fe3O4 纳米颗粒会导致 ROS 显著升高,与 DNA 损伤无关。因此,由于其对大多数测试基准物质遗传毒性的充分预测性及其在高通量格式下易于实施,53BP1 检测方法可以作为一种补充性的高通量遗传毒性筛选检测方法,在新方法开发的背景下。
Methods Mol Biol. 2019
Nanomaterials (Basel). 2019-11-24
J Nanosci Nanotechnol. 2015-2
Aging (Albany NY). 2024-10-24
J Pharm Investig. 2023
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022-11
Adv Drug Deliv Rev. 2022-9