文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Pre-validation of a reporter gene assay for oxidative stress for the rapid screening of nanobiomaterials.

作者信息

Martin Sebastin, de Haan Laura, Miro Estruch Ignacio, Eder Kai Moritz, Marzi Anne, Schnekenburger Jürgen, Blosi Magda, Costa Anna, Antonello Giulia, Bergamaschi Enrico, Riganti Chiara, Beal David, Carrière Marie, Taché Olivier, Hutchison Gary, Malone Eva, Young Lesley, Campagnolo Luisa, La Civita Fabio, Pietroiusti Antonio, Devineau Stéphanie, Baeza Armelle, Boland Sonja, Zong Cai, Ichihara Gaku, Fadeel Bengt, Bouwmeester Hans

机构信息

Division of Molecular Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.

Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands.

出版信息

Front Toxicol. 2022 Sep 5;4:974429. doi: 10.3389/ftox.2022.974429. eCollection 2022.


DOI:10.3389/ftox.2022.974429
PMID:36171865
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9511406/
Abstract

Engineered nanomaterials have been found to induce oxidative stress. Cellular oxidative stress, in turn, can result in the induction of antioxidant and detoxification enzymes which are controlled by the nuclear erythroid 2-related factor 2 (NRF2) transcription factor. Here, we present the results of a pre-validation study which was conducted within the frame of BIORIMA ("biomaterial risk management") an EU-funded research and innovation project. For this we used an NRF2 specific chemically activated luciferase expression reporter gene assay derived from the human U2OS osteosarcoma cell line to screen for the induction of the NRF2 mediated gene expression following exposure to biomedically relevant nanobiomaterials. Specifically, we investigated FeO-PEG-PLGA nanomaterials while Ag and TiO "benchmark" nanomaterials from the Joint Research Center were used as reference materials. The viability of the cells was determined by using the Alamar blue assay. We performed an interlaboratory study involving seven different laboratories to assess the applicability of the NRF2 reporter gene assay for the screening of nanobiomaterials. The latter work was preceded by online tutorials to ensure that the procedures were harmonized across the different participating laboratories. FeO-PEG-PLGA nanomaterials were found to induce very limited NRF2 mediated gene expression, whereas exposure to Ag nanomaterials induced NRF2 mediated gene expression. TiO nanomaterials did not induce NRF2 mediated gene expression. The variability in the results obtained by the participating laboratories was small with mean intra-laboratory standard deviation of 0.16 and mean inter laboratory standard deviation of 0.28 across all NRF2 reporter gene assay results. We conclude that the NRF2 reporter gene assay is a suitable assay for the screening of nanobiomaterial-induced oxidative stress responses.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e66/9511406/1f513cbaa4a5/ftox-04-974429-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e66/9511406/ddbeca7e84f6/ftox-04-974429-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e66/9511406/6239ebf1d0ba/ftox-04-974429-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e66/9511406/782a5dea47e7/ftox-04-974429-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e66/9511406/70d68b45444a/ftox-04-974429-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e66/9511406/0351ffa09a1f/ftox-04-974429-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e66/9511406/859f1ce7b07a/ftox-04-974429-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e66/9511406/1f513cbaa4a5/ftox-04-974429-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e66/9511406/ddbeca7e84f6/ftox-04-974429-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e66/9511406/6239ebf1d0ba/ftox-04-974429-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e66/9511406/782a5dea47e7/ftox-04-974429-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e66/9511406/70d68b45444a/ftox-04-974429-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e66/9511406/0351ffa09a1f/ftox-04-974429-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e66/9511406/859f1ce7b07a/ftox-04-974429-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e66/9511406/1f513cbaa4a5/ftox-04-974429-g007.jpg

相似文献

[1]
Pre-validation of a reporter gene assay for oxidative stress for the rapid screening of nanobiomaterials.

Front Toxicol. 2022-9-5

[2]
Gene expression changes induced by skin sensitizers in the KeratinoSens™ cell line: Discriminating Nrf2-dependent and Nrf2-independent events.

Toxicol In Vitro. 2013-9-20

[3]
Bilirubin mediated oxidative stress involves antioxidant response activation via Nrf2 pathway.

Cell Signal. 2013-12-2

[4]
An essential role of Nrf2 in American ginseng-mediated anti-oxidative actions in cardiomyocytes.

J Ethnopharmacol. 2010-5-4

[5]
Role of platelet-released growth factors in detoxification of reactive oxygen species in osteoblasts.

Bone. 2014-8

[6]
Transcriptional regulation of activating transcription factor 4 under oxidative stress in retinal pigment epithelial ARPE-19/HPV-16 cells.

Invest Ophthalmol Vis Sci. 2011-3-2

[7]
Development of a panel of high-throughput reporter-gene assays to detect genotoxicity and oxidative stress.

Mutat Res Genet Toxicol Environ Mutagen. 2014-1-15

[8]
Adaptive induction of NF-E2-related factor-2-driven antioxidant genes in endothelial cells in response to hyperglycemia.

Am J Physiol Heart Circ Physiol. 2011-1-7

[9]
Willow bark extract increases antioxidant enzymes and reduces oxidative stress through activation of Nrf2 in vascular endothelial cells and Caenorhabditis elegans.

Free Radic Biol Med. 2013-12

[10]
Organic dust, causing both oxidative stress and Nrf2 activation, is phagocytized by bronchial epithelial cells.

Am J Physiol Lung Cell Mol Physiol. 2019-5-22

引用本文的文献

[1]
Nanomaterial genotoxicity evaluation using the high-throughput p53-binding protein 1 (53BP1) assay.

PLoS One. 2023

[2]
High-Dose Exposure to Polymer-Coated Iron Oxide Nanoparticles Elicits Autophagy-Dependent Ferroptosis in Susceptible Cancer Cells.

Nanomaterials (Basel). 2023-5-24

本文引用的文献

[1]
Determining nanoform similarity via assessment of surface reactivity by abiotic and in vitro assays.

NanoImpact. 2022-4

[2]
Occupational risk of nano-biomaterials: Assessment of nano-enabled magnetite contrast agent using the BIORIMA Decision Support System.

NanoImpact. 2022-1

[3]
Myelin-specific T cells carry and release magnetite PGLA-PEG COOH nanoparticles in the mouse central nervous system.

RSC Adv. 2018-1-3

[4]
Ultrasmall iron oxide nanoparticles cause significant toxicity by specifically inducing acute oxidative stress to multiple organs.

Part Fibre Toxicol. 2022-3-29

[5]
Label-Free Digital Holographic Microscopy for In Vitro Cytotoxic Effect Quantification of Organic Nanoparticles.

Cells. 2022-2-12

[6]
Proteome-wide analysis reveals molecular pathways affected by AgNP in a ROS-dependent manner.

Nanotoxicology. 2022-2

[7]
Safe- and sustainable-by-design: The case of Smart Nanomaterials. A perspective based on a European workshop.

Regul Toxicol Pharmacol. 2022-2

[8]
Multi-walled carbon nanotubes trigger lysosome-dependent cell death (pyroptosis) in macrophages but not in neutrophils.

Nanotoxicology. 2021-11

[9]
Stabilization of Nrf2 leading to HO-1 activation protects against zinc oxide nanoparticles-induced endothelial cell death.

Nanotoxicology. 2021-8

[10]
Evaluation of the skin sensitization potential of metal oxide nanoparticles using the ARE-Nrf2 Luciferase KeratinoSens assay.

Toxicol Res. 2021-1-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索