Suppr超能文献

3D 打印 PLGA 植入物:填充密度如何影响药物释放。

3D printed PLGA implants: How the filling density affects drug release.

机构信息

Univ. Lille, Inserm, CHU Lille, U1008, F-59000 Lille, France.

IMT Lille Douai, Dept Polymers & Composites Technol & Mech Engn, F-59500 Douai, France.

出版信息

J Control Release. 2023 Nov;363:1-11. doi: 10.1016/j.jconrel.2023.09.020. Epub 2023 Sep 20.

Abstract

Different types of ibuprofen-loaded, poly (D,L lactic-co-glycolic acid) (PLGA)-based implants were prepared by 3D printing (Droplet Deposition Modeling). The theoretical filling density of the mesh-shaped implants was varied from 10 to 100%. Drug release was measured in agarose gels and in well agitated phosphate buffer pH 7.4. The key properties of the implants (and dynamic changes thereof upon exposure to the release media) were monitored using gravimetric measurements, optical microscopy, Differential Scanning Calorimetry, Gel Permeation Chromatography, and Scanning Electron Microscopy. Interestingly, drug release was similar for implants with 10 and 30% filling density, irrespective of the experimental set-up. In contrast, implants with 100% filling density showed slower release kinetics, and the shape of the release curve was altered in agarose gels. These observations could be explained by the existence (or absence) of a continuous aqueous phase between the polymeric filaments and the "orchestrating role" of substantial system swelling for the control of drug release. At lower filling densities, it is sufficient for the drug to be released from a single filament. In contrast, at high filling densities, the ensemble of filaments acts as a much larger (more or less homogeneous) polymeric matrix, and the average diffusion pathway to be overcome by the drug is much longer. Agarose gel (mimicking living tissue) hinders substantial PLGA swelling and delays the onset of the final rapid drug release phase. This improved mechanistic understanding of the control of drug release from PLGA-based 3D printed implants can help to facilitate the optimization of this type of advanced drug delivery systems.

摘要

不同类型的负载布洛芬的聚(D,L-丙交酯-共-乙交酯)(PLGA)基植入物通过 3D 打印(液滴沉积建模)制备。网格状植入物的理论填充密度从 10%变化到 100%。在琼脂糖凝胶中和在剧烈搅拌的磷酸盐缓冲液 pH 7.4 中测量药物释放。使用重量法、光学显微镜、差示扫描量热法、凝胶渗透色谱法和扫描电子显微镜监测植入物的关键特性(及其暴露于释放介质时的动态变化)。有趣的是,填充密度为 10%和 30%的植入物的药物释放相似,与实验设置无关。相比之下,填充密度为 100%的植入物显示出较慢的释放动力学,并且在琼脂糖凝胶中的释放曲线形状发生了改变。这些观察结果可以通过在聚合物细丝之间存在(或不存在)连续的水相以及大量系统溶胀对药物释放控制的“协调作用”来解释。在较低的填充密度下,药物从单个细丝中释放就足够了。相比之下,在较高的填充密度下,细丝的集合体作为一个更大(或多或少均匀)的聚合物基质,药物要克服的平均扩散途径要长得多。琼脂糖凝胶(模拟活组织)阻碍了大量 PLGA 溶胀并延迟了最终快速药物释放阶段的开始。对 PLGA 基 3D 打印植入物中药物释放控制的这种改进的机制理解有助于促进此类先进药物输送系统的优化。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验