Akbar Abdul Rehman, Peng Gangqiang, Li Yongyi, Iqbal Rashid, Saleem Adil, Wang Guohong, Khan Abdul Sammed, Ali Mumtaz, Tahir Muhammad, Assiri Mohammed A, Ali Ghaffar, Liu Fude
Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
Small. 2023 Nov;19(44):e2304686. doi: 10.1002/smll.202304686. Epub 2023 Sep 15.
The fabrication of low-cost, effective, and highly integrated nanostructured materials through simple and reproducible methods for high-energy-density supercapacitors is highly desirable. Herein, an activated carbon cloth (ACC) is designed as the functional scaffold for supercapacitors and treated hydrothermally to deposit NiCo nanoneedles working as internal core, followed by a dip-dry coating of NiOOH nanoflakes core-shell and uniform hydrothermal deposition of CoMoO nanosheets serving as an external shell. The structured core-shell heterostructure ACC@NiCo@NiOOH@CoMoO electrode resulted in exceptional specific areal capacitance of 2920 mF cm and exceptional cycling stability for 10 000 cycles. Moreover, the fabricated electrode is developed into an asymmetric supercapacitor which demonstrates excellent areal capacitance, energy density, and power density within the broad potential window of 1.7 V with a cycling life of 92.4% after 10 000 charge-discharge cycles, which reflects excellent cycle life. The distinctive core-shell structure, highly conductive substrate, and synergetic effect of coated material results in more electrochemical active sites and flanges for effective electrons and ion transportation. This unique technique provides a new perspective for cost-efficient supercapacitor applications.
通过简单且可重复的方法制备用于高能量密度超级电容器的低成本、高效且高度集成的纳米结构材料是非常理想的。在此,将活性炭布(ACC)设计为超级电容器的功能支架,并进行水热处理以沉积作为内核的NiCo纳米针,随后通过浸涂-干燥法涂覆NiOOH纳米片核壳,并均匀水热沉积作为外壳的CoMoO纳米片。结构化的核壳异质结构ACC@NiCo@NiOOH@CoMoO电极具有2920 mF cm的出色比面积电容以及10000次循环的出色循环稳定性。此外,所制备的电极被开发成一种不对称超级电容器,在1.7 V的宽电位窗口内展示出优异的面积电容、能量密度和功率密度,在10000次充放电循环后循环寿命为92.4%,这反映了出色的循环寿命。独特的核壳结构、高导电性基底以及涂层材料的协同效应导致了更多的电化学活性位点和凸缘,以实现有效的电子和离子传输。这种独特的技术为具有成本效益的超级电容器应用提供了新的视角。