Suppr超能文献

Concurrent Learning-Based Adaptive Control of Underactuated Robotic Systems With Guaranteed Transient Performance for Both Actuated and Unactuated Motions.

作者信息

Yang Tong, Sun Ning, Liu Zhuoqing, Fang Yongchun

出版信息

IEEE Trans Neural Netw Learn Syst. 2024 Dec;35(12):18133-18144. doi: 10.1109/TNNLS.2023.3311927. Epub 2024 Dec 2.

Abstract

With the wide applications of underactuated robotic systems, more complex tasks and higher safety demands are put forward. However, it is still an open issue to utilize "fewer" control inputs to satisfy control accuracy and transient performance with theoretical and practical guarantee, especially for unactuated variables. To this end, for underactuated robotic systems, this article designs an adaptive tracking controller to realize exponential convergence results, rather than only asymptotic stability or boundedness; meanwhile, unactuated states exponentially converge to a small enough bound, which is adjustable by control gains. The maximum motion ranges and convergence speed of all variables both exhibit satisfactory performance with higher safety and efficiency. Here, a data-driven concurrent learning (CL) method is proposed to compensate for unknown dynamics/disturbances and improve the estimate accuracy of parameters/weights, without the need for persistency of excitation or linear parametrization (LP) conditions. Then, a disturbance judgment mechanism is utilized to eliminate the detrimental impacts of external disturbances. As far as we know, for general underactuated systems with uncertainties/disturbances, it is the first time to theoretically and practically ensure transient performance and exponential convergence speed for unactuated states, and simultaneously obtain the exponential tracking result of actuated motions. Both theoretical analysis and hardware experiment results illustrate the effectiveness of the designed controller.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验