Laboratory of Anoxygenic Phototrophs, Institute of Microbiology of the Czech Acad Sci, Třeboň 37981, Czechia.
Faculty of Science, University of South Bohemia, České Budějovice 37005, Czechia.
Proc Natl Acad Sci U S A. 2022 Dec 13;119(50):e2211018119. doi: 10.1073/pnas.2211018119. Epub 2022 Dec 5.
Photoheterotrophic bacteria harvest light energy using either proton-pumping rhodopsins or bacteriochlorophyll (BChl)-based photosystems. The bacterium AAP5 isolated from the alpine lake Gossenköllesee contains genes for both systems. Here, we show that BChl is expressed between 4°C and 22°C in the dark, whereas xanthorhodopsin is expressed only at temperatures below 16°C and in the presence of light. Thus, cells grown at low temperatures under a natural light-dark cycle contain both BChl-based photosystems and xanthorhodopsins with a nostoxanthin antenna. Flash photolysis measurements proved that both systems are photochemically active. The captured light energy is used for ATP synthesis and stimulates growth. Thus, AAP5 represents a chlorophototrophic and a retinalophototrophic organism. Our analyses suggest that simple xanthorhodopsin may be preferred by the cells under higher light and low temperatures, whereas larger BChl-based photosystems may perform better at lower light intensities. This indicates that the use of two systems for light harvesting may represent an evolutionary adaptation to the specific environmental conditions found in alpine lakes and other analogous ecosystems, allowing bacteria to alternate their light-harvesting machinery in response to large seasonal changes of irradiance and temperature.
光能异养细菌利用质子泵视紫红质或细菌叶绿素 (BChl) 基光合系统来获取光能。从高山湖泊 Gossenköllesee 中分离出的 AAP5 细菌含有这两种系统的基因。在这里,我们表明,在黑暗中,BChl 在 4°C 到 22°C 之间表达,而黄氧还蛋白仅在低于 16°C 的温度和光照下表达。因此,在自然光-暗周期下在低温下生长的细胞既含有 BChl 基光合系统,又含有具有 nostoxanthin 天线的黄氧还蛋白。闪光光解测量证明了这两个系统都是光化学活性的。捕获的光能用于 ATP 合成并刺激生长。因此,AAP5 代表了一种叶绿素光合生物和一种视紫红质光合生物。我们的分析表明,在较高的光和较低的温度下,简单的黄氧还蛋白可能更受细胞的青睐,而较大的 BChl 基光合系统在较低的光强度下可能表现得更好。这表明,两种系统用于光捕获可能代表了对高山湖泊和其他类似生态系统中特定环境条件的进化适应,使细菌能够根据辐照度和温度的季节性大幅变化来交替使用其光捕获机制。