Cell Biology and Biophysics, European Molecular Biology Laboratory, Heidelberg, Germany.
Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria; email:
Annu Rev Genet. 2023 Nov 27;57:411-434. doi: 10.1146/annurev-genet-072320-125436. Epub 2023 Sep 18.
Symbiotic interactions occur in all domains of life, providing organisms with resources to adapt to new habitats. A prime example is the endosymbiosis between corals and photosynthetic dinoflagellates. Eukaryotic dinoflagellate symbionts reside inside coral cells and transfer essential nutrients to their hosts, driving the productivity of the most biodiverse marine ecosystem. Recent advances in molecular and genomic characterization have revealed symbiosis-specific genes and mechanisms shared among symbiotic cnidarians. In this review, we focus on the cellular and molecular processes that underpin the interaction between symbiont and host. We discuss symbiont acquisition via phagocytosis, modulation of host innate immunity, symbiont integration into host cell metabolism, and nutrient exchange as a fundamental aspect of stable symbiotic associations. We emphasize the importance of using model systems to dissect the cellular complexity of endosymbiosis, which ultimately serves as the basis for understanding its ecology and capacity to adapt in the face of climate change.
共生相互作用发生在生命的所有领域,为生物提供资源以适应新的栖息地。一个主要的例子是珊瑚和光合甲藻之间的内共生。真核甲藻共生体存在于珊瑚细胞内,并将必需的营养物质转移给宿主,从而驱动了最多样化的海洋生态系统的生产力。分子和基因组特征的最新进展揭示了共生共生体之间共享的共生特异性基因和机制。在这篇综述中,我们专注于支持共生体和宿主之间相互作用的细胞和分子过程。我们讨论了通过吞噬作用获得共生体、宿主先天免疫的调节、共生体整合到宿主细胞代谢以及营养交换作为稳定共生关联的基本方面。我们强调了使用模型系统来剖析内共生的细胞复杂性的重要性,这最终是理解其生态学和适应气候变化能力的基础。