Ha Pin, Kwak Jin Hee, Zhang Yulong, Shi Jiayu, Tran Luan, Liu Timothy Pan, Pan Hsin-Chuan, Lee Samantha, Kim Jong Kil, Chen Eric, Shirazi-Fard Yasaman, Stodieck Louis S, Lin Andy, Zheng Zhong, Dong Stella Nuo, Zhang Xinli, Wu Benjamin M, Ting Kang, Soo Chia
Division of Plastic and Reconstructive Surgery, Department of Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
Department of Orthopaedic Surgery and the Orthopaedic Hospital Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
NPJ Microgravity. 2023 Sep 18;9(1):75. doi: 10.1038/s41526-023-00319-7.
Microgravity-induced bone loss results in a 1% bone mineral density loss monthly and can be a mission critical factor in long-duration spaceflight. Biomolecular therapies with dual osteogenic and anti-resorptive functions are promising for treating extreme osteoporosis. We previously confirmed that NELL-like molecule-1 (NELL-1) is crucial for bone density maintenance. We further PEGylated NELL-1 (NELL-polyethylene glycol, or NELL-PEG) to increase systemic delivery half-life from 5.5 to 15.5 h. In this study, we used a bio-inert bisphosphonate (BP) moiety to chemically engineer NELL-PEG into BP-NELL-PEG and specifically target bone tissues. We found conjugation with BP improved hydroxyapatite (HA) binding and protein stability of NELL-PEG while preserving NELL-1's osteogenicity in vitro. Furthermore, BP-NELL-PEG showed superior in vivo bone specificity without observable pathology in liver, spleen, lungs, brain, heart, muscles, or ovaries of mice. Finally, we tested BP-NELL-PEG through spaceflight exposure onboard the International Space Station (ISS) at maximal animal capacity (n = 40) in a long-term (9 week) osteoporosis therapeutic study and found that BP-NELL-PEG significantly increased bone formation in flight and ground control mice without obvious adverse health effects. Our results highlight BP-NELL-PEG as a promising therapeutic to mitigate extreme bone loss from long-duration microgravity exposure and musculoskeletal degeneration on Earth, especially when resistance training is not possible due to incapacity (e.g., bone fracture, stroke).
微重力引起的骨质流失导致每月骨矿物质密度损失1%,并且可能成为长期太空飞行中影响任务成败的关键因素。具有成骨和抗吸收双重功能的生物分子疗法有望用于治疗重度骨质疏松症。我们之前证实,类NELL样分子1(NELL-1)对维持骨密度至关重要。我们进一步对NELL-1进行聚乙二醇化修饰(NELL-聚乙二醇,即NELL-PEG),将其全身递送半衰期从5.5小时延长至15.5小时。在本研究中,我们使用生物惰性双膦酸盐(BP)部分将NELL-PEG进行化学改造,得到BP-NELL-PEG,使其能够特异性靶向骨组织。我们发现与BP结合可改善NELL-PEG与羟基磷灰石(HA)的结合以及蛋白质稳定性,同时在体外保留NELL-1的成骨活性。此外,BP-NELL-PEG在体内表现出卓越的骨特异性,在小鼠的肝脏、脾脏、肺、脑、心脏、肌肉或卵巢中未观察到明显病变。最后,我们在国际空间站(ISS)上以最大动物容量(n = 40)进行了一项为期9周的骨质疏松症治疗长期研究,对BP-NELL-PEG进行太空飞行暴露测试,发现BP-NELL-PEG显著增加了飞行组和地面对照组小鼠的骨形成,且未产生明显的健康不良影响。我们的研究结果表明,BP-NELL-PEG是一种有前景的治疗方法,可减轻长期微重力暴露引起的极度骨质流失以及地球上的肌肉骨骼退化,特别是在因身体能力受限(如骨折、中风)而无法进行抗阻训练的情况下。