Suppr超能文献

混合拉丁美洲人群的全基因组人口建模。

Demographic modeling of admixed Latin American populations from whole genomes.

机构信息

National Laboratory of Genomics for Biodiversity (LANGEBIO), Advanced Genomics Unit (UGA), CINVESTAV, Irapuato, Guanajuato 36824, Mexico.

Laboratorio Internacional de Investigación sobre el Genoma Humano, Universidad Nacional Autónoma de Mexico, Juriquilla, Querétaro 76230, Mexico.

出版信息

Am J Hum Genet. 2023 Oct 5;110(10):1804-1816. doi: 10.1016/j.ajhg.2023.08.015. Epub 2023 Sep 18.

Abstract

Demographic models of Latin American populations often fail to fully capture their complex evolutionary history, which has been shaped by both recent admixture and deeper-in-time demographic events. To address this gap, we used high-coverage whole-genome data from Indigenous American ancestries in present-day Mexico and existing genomes from across Latin America to infer multiple demographic models that capture the impact of different timescales on genetic diversity. Our approach, which combines analyses of allele frequencies and ancestry tract length distributions, represents a significant improvement over current models in predicting patterns of genetic variation in admixed Latin American populations. We jointly modeled the contribution of European, African, East Asian, and Indigenous American ancestries into present-day Latin American populations. We infer that the ancestors of Indigenous Americans and East Asians diverged ∼30 thousand years ago, and we characterize genetic contributions of recent migrations from East and Southeast Asia to Peru and Mexico. Our inferred demographic histories are consistent across different genomic regions and annotations, suggesting that our inferences are robust to the potential effects of linked selection. In conjunction with published distributions of fitness effects for new nonsynonymous mutations in humans, we show in large-scale simulations that our models recover important features of both neutral and deleterious variation. By providing a more realistic framework for understanding the evolutionary history of Latin American populations, our models can help address the historical under-representation of admixed groups in genomics research and can be a valuable resource for future studies of populations with complex admixture and demographic histories.

摘要

拉丁美洲人群的人口统计学模型通常无法充分捕捉其复杂的进化历史,这些历史受到近期混合和更久远的人口统计学事件的影响。为了解决这一差距,我们使用了来自现代墨西哥的美洲原住民血统的高覆盖率全基因组数据和来自拉丁美洲各地的现有基因组,推断出多个人口统计学模型,以捕捉不同时间尺度对遗传多样性的影响。我们的方法结合了等位基因频率和祖先轨迹长度分布的分析,与目前预测混合拉丁美洲人群遗传变异模式的模型相比有了显著的改进。我们共同模拟了欧洲、非洲、东亚和美洲原住民血统对现代拉丁美洲人群的贡献。我们推断出美洲原住民和东亚人的祖先在约 3 万年前就已经分化,并且我们描述了东亚和东南亚最近向秘鲁和墨西哥移民的遗传贡献。我们推断的人口历史在不同的基因组区域和注释中是一致的,这表明我们的推断对潜在的连锁选择效应具有稳健性。结合人类新非同义突变的适应性效应的已发表分布,我们在大规模模拟中表明,我们的模型可以恢复中性和有害变异的重要特征。通过为理解拉丁美洲人群的进化历史提供更现实的框架,我们的模型可以帮助解决混合群体在基因组学研究中代表性不足的历史问题,并为具有复杂混合和人口统计学历史的人群的未来研究提供有价值的资源。

相似文献

1
Demographic modeling of admixed Latin American populations from whole genomes.混合拉丁美洲人群的全基因组人口建模。
Am J Hum Genet. 2023 Oct 5;110(10):1804-1816. doi: 10.1016/j.ajhg.2023.08.015. Epub 2023 Sep 18.
2
Genomic Insights into the Ancestry and Demographic History of South America.对南美洲祖先和人口历史的基因组洞察。
PLoS Genet. 2015 Dec 4;11(12):e1005602. doi: 10.1371/journal.pgen.1005602. eCollection 2015 Dec.
6
Ancestral components of admixed genomes in a Mexican cohort.墨西哥队列中混合基因组的祖先成分。
PLoS Genet. 2011 Dec;7(12):e1002410. doi: 10.1371/journal.pgen.1002410. Epub 2011 Dec 15.

本文引用的文献

1
Demes: a standard format for demographic models.人群:人口模型的标准格式。
Genetics. 2022 Nov 1;222(3). doi: 10.1093/genetics/iyac131.
4
The genetic legacy of the Manila galleon trade in Mexico.墨西哥马尼拉大帆船贸易的基因遗产。
Philos Trans R Soc Lond B Biol Sci. 2022 Jun 6;377(1852):20200419. doi: 10.1098/rstb.2020.0419. Epub 2022 Apr 18.
7
Peopling of the Americas as inferred from ancient genomics.从古代基因组学推断的美洲人群起源。
Nature. 2021 Jun;594(7863):356-364. doi: 10.1038/s41586-021-03499-y. Epub 2021 Jun 16.
8
Human genetic admixture.人类基因混合。
PLoS Genet. 2021 Mar 11;17(3):e1009374. doi: 10.1371/journal.pgen.1009374. eCollection 2021 Mar.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验