Suppr超能文献

基于富锂阴极的锂金属电池的具有氧化稳定性的局部饱和醚基电解质。

Locally Saturated Ether-Based Electrolytes With Oxidative Stability For Li Metal Batteries Based on Li-Rich Cathodes.

作者信息

Holoubek John, Liu Haodong, Yan Qizhang, Wu Zhaohui, Qiu Bao, Zhang Minghao, Yu Sicen, Wang Shen, Zhou Jianbin, Pascal Tod A, Luo Jian, Liu Zhaoping, Meng Ying Shirley, Liu Ping

机构信息

Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States.

Ningbo Institute of Materials Technology and Engineering (NIMTE), Chinese Academy of Sciences, Zhejiang 315201, China.

出版信息

ACS Appl Mater Interfaces. 2023 Oct 4;15(39):45764-45773. doi: 10.1021/acsami.3c07224. Epub 2023 Sep 19.

Abstract

Li metal batteries applying Li-rich, Mn-rich (LMR) layered oxide cathodes present an opportunity to achieve high-energy density at reduced cell cost. However, the intense oxidizing and reducing potentials associated with LMR cathodes and Li anodes present considerable design challenges for prospective electrolytes. Herein, we demonstrate that, somewhat surprisingly, a properly designed localized-high-concentration electrolyte (LHCE) based on ether solvents is capable of providing reversible performance for Li||LMR cells. Specifically, the oxidative stability of the LHCE was found to heavily rely on the ratio between salt and solvating solvent, where local-saturation was necessary to stabilize performance. Through molecular dynamics (MD) simulations, this behavior was found to be a result of aggregated solvation structures of Li/anion pairs. This LHCE system was found to produce significantly improved LMR cycling (95.8% capacity retention after 100 cycles) relative to a carbonate control as a result of improved cathode-electrolyte interphase (CEI) chemistry from X-ray photoelectron spectroscopy (XPS), and cryogenic transmission electron microscopy (cryo-TEM). Leveraging this stability, 4 mAh cm LMR||2× Li full cells were demonstrated, retaining 87% capacity after 80 cycles in LHCE, whereas the control electrolyte produced rapid failure. This work uncovers the benefits, design requirements, and performance origins of LHCE electrolytes for high-voltage Li||LMR batteries.

摘要

应用富锂、富锰(LMR)层状氧化物阴极的锂金属电池为以降低电池成本实现高能量密度提供了契机。然而,与LMR阴极和锂阳极相关的强氧化和还原电位给潜在电解质带来了相当大的设计挑战。在此,我们证明, somewhat surprisingly,一种基于醚类溶剂的经过适当设计的局部高浓度电解质(LHCE)能够为Li||LMR电池提供可逆性能。具体而言,发现LHCE的氧化稳定性在很大程度上依赖于盐与溶剂化溶剂之间的比例,其中局部饱和对于稳定性能是必要的。通过分子动力学(MD)模拟,发现这种行为是Li/阴离子对聚集溶剂化结构的结果。由于X射线光电子能谱(XPS)和低温透射电子显微镜(cryo-TEM)显示的阴极-电解质界面(CEI)化学性质得到改善,相对于碳酸盐对照物,该LHCE体系被发现能显著改善LMR循环性能(100次循环后容量保持率为95.8%)。利用这种稳定性,展示了4 mAh cm LMR||2×Li全电池,在LHCE中80次循环后容量保持87%,而对照电解质则迅速失效。这项工作揭示了用于高压Li||LMR电池的LHCE电解质的优点、设计要求和性能来源。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验