Li Menghao, Liu Yue, Yang Xuming, Zhang Qing, Cheng Yifeng, Deng Li, Zhou Qiwei, Cheng Tao, Gu M Danny
Eastern Institute for Advanced Study, Eastern Institute of Technology, Ningbo, Zhejiang, 315200, P. R. China.
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, P. R. China.
Adv Mater. 2024 Sep;36(36):e2404271. doi: 10.1002/adma.202404271. Epub 2024 Jul 27.
Acetonitrile (AN) is a compelling electrolyte solvent for high-voltage and fast-charging batteries, but its reductive instability makes it incompatible with lithium metal anodes (LMAs). Herein, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE) is used as the diluent to build an AN-based local high-concentration electrolyte (LHCE) to realize dense, dendrite-free, and stable LMAs. Such LHCE exhibits an exceptional electrochemical stability window close to 6 V (vs Li/Li), excellent wettability, and promising flame retardancy. Compared to a baseline carbonate-based electrolyte, its electrochemical performance is prominent: the overpotential of lithium nucleation is minimal (only 24 mV), the average half-cell coulombic efficiency (CE) reaches 99.5% at 0.5 mA cm, and its practicality in full cells with LiFePO (LFP) and LiNiCoMnO (NCM811) cathodes is also demonstrated. Compounding factors are identified to decipher the superiority of the AN-based LHCE. From the respect of solvation structures, both the elimination of free AN molecule and the diluent separation would contribute to prevention of anodic AN decomposition. Based on cryogenic electron microscopy (Cryo-EM) characterization and theoretical simulations results, the produced solid-electrolyte interphase (SEI) layer is uniform and compact. Thus, this work demonstrates a successful application of AN-based electrolytes in LMAs-traditionally deemed impractical-via the combined regulation of solvation and SEI structures.
乙腈(AN)是一种适用于高压快充电池的极具吸引力的电解质溶剂,但其还原不稳定性使其无法与锂金属负极(LMA)兼容。在此,1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚(TTE)被用作稀释剂,以构建一种基于AN的局部高浓度电解质(LHCE),从而实现致密、无枝晶且稳定的LMA。这种LHCE具有接近6 V(相对于Li/Li)的出色电化学稳定性窗口、优异的润湿性以及良好的阻燃性。与基线碳酸盐基电解质相比,其电化学性能十分突出:锂成核过电位极小(仅24 mV),在0.5 mA cm下平均半电池库仑效率(CE)达到99.5%,并且还展示了其在具有磷酸铁锂(LFP)和镍钴锰酸锂(NCM811)正极的全电池中的实用性。确定了复合因素以解释基于AN的LHCE的优越性。从溶剂化结构方面来看,游离AN分子的消除和稀释剂的分离都有助于防止阳极AN分解。基于低温电子显微镜(Cryo-EM)表征和理论模拟结果,所生成的固体电解质界面(SEI)层均匀且致密。因此,这项工作通过溶剂化和SEI结构的联合调控,成功地将基于AN的电解质应用于传统上被认为不实用的LMA中。