Suppr超能文献

析氧反应过程中Fe掺入NiO八面体的空间和化学分辨可视化

Spatially and Chemically Resolved Visualization of Fe Incorporation into NiO Octahedra during the Oxygen Evolution Reaction.

作者信息

Yang Fengli, Lopez Luna Mauricio, Haase Felix T, Escalera-López Daniel, Yoon Aram, Rüscher Martina, Rettenmaier Clara, Jeon Hyo Sang, Ortega Eduardo, Timoshenko Janis, Bergmann Arno, Chee See Wee, Roldan Cuenya Beatriz

机构信息

Department of Interface Science, Fritz-Haber-Institute of the Max-Planck Society, 14195 Berlin, Germany.

出版信息

J Am Chem Soc. 2023 Oct 4;145(39):21465-21474. doi: 10.1021/jacs.3c07158. Epub 2023 Sep 19.

Abstract

The activity of Ni (hydr)oxides for the electrochemical evolution of oxygen (OER), a key component of the overall water splitting reaction, is known to be greatly enhanced by the incorporation of Fe. However, a complete understanding of the role of cationic Fe species and the nature of the catalyst surface under reaction conditions remains unclear. Here, using a combination of electrochemical cell and conventional transmission electron microscopy, we show how the surface of NiO electrocatalysts, with initially well-defined surface facets, restructures under applied potential and forms an active NiFe layered double (oxy)hydroxide (NiFe-LDH) when Fe ions are present in the electrolyte. Continued OER under these conditions, however, leads to the creation of additional FeO aggregates. Electrochemically, the NiFe-LDH formation correlates with a lower onset potential toward the OER, whereas the formation of the FeO aggregates is accompanied by a gradual decrease in the OER activity. Complementary insight into the catalyst near-surface composition, structure, and chemical state is further extracted using X-ray photoelectron spectroscopy, operando Raman spectroscopy, and operando X-ray absorption spectroscopy together with measurements of Fe uptake by the electrocatalysts using time-resolved inductively coupled plasma mass spectrometry. Notably, we identified that the catalytic deactivation under stationary conditions is linked to the degradation of in situ-created NiFe-LDH. These insights exemplify the complexity of the active state formation and show how its structural and morphological evolution under different applied potentials can be directly linked to the catalyst activation and degradation.

摘要

镍(氢)氧化物对电化学析氧反应(OER)的活性是整个水分解反应的关键组成部分,已知通过引入铁可大大提高其活性。然而,对于阳离子铁物种的作用以及反应条件下催化剂表面的性质仍缺乏全面的了解。在此,我们结合电化学电池和传统透射电子显微镜,展示了初始具有明确表面晶面的NiO电催化剂表面在施加电势下如何重构,并在电解液中存在铁离子时形成活性的镍铁层状双(氢)氧化物(NiFe-LDH)。然而,在这些条件下持续进行OER会导致额外的FeO聚集体生成。在电化学方面,NiFe-LDH的形成与OER的较低起始电势相关,而FeO聚集体的形成伴随着OER活性的逐渐降低。利用X射线光电子能谱、原位拉曼光谱和原位X射线吸收光谱,并结合使用时间分辨电感耦合等离子体质谱测量电催化剂对铁的吸收,进一步深入了解了催化剂近表面的组成、结构和化学状态。值得注意的是,我们发现稳态条件下的催化失活与原位生成的NiFe-LDH的降解有关。这些见解例证了活性状态形成的复杂性,并展示了其在不同施加电势下的结构和形态演变如何与催化剂的活化和降解直接相关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d784/10557136/12a0d5d1bd40/ja3c07158_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验