Department of Physiology and Pharmacology, Karolinska Institute, 171 77, Stockholm, Sweden.
Division of Structural Biology, University of Oxford, OX3 7BN, Oxford, UK.
Nat Commun. 2023 Sep 19;14(1):5802. doi: 10.1038/s41467-023-41478-1.
Cryo electron microscopy (cryo-EM) is used by biological research to visualize biomolecular complexes in 3D, but the heterogeneity of cryo-EM reconstructions is not easily estimated. Current processing paradigms nevertheless exert great effort to reduce flexibility and heterogeneity to improve the quality of the reconstruction. Clustering algorithms are typically employed to identify populations of data with reduced variability, but lack assessment of remaining heterogeneity. Here we develope a fast and simple algorithm based on spatial filtering to estimate the heterogeneity of a reconstruction. In the absence of flexibility, this estimate approximates macromolecular component occupancy. We show that our implementation can derive reasonable input parameters, that composition heterogeneity can be estimated based on contrast loss, and that the reconstruction can be modified accordingly to emulate altered constituent occupancy. This stands to benefit conventionally employed maximum-likelihood classification methods, whereas we here limit considerations to cryo-EM map interpretation, quantification, and particle-image signal subtraction.
低温电子显微镜(cryo-EM)被用于生物研究中,以三维方式可视化生物分子复合物,但低温电子显微镜重构的异质性不容易估计。然而,目前的处理范式仍然努力降低灵活性和异质性,以提高重构的质量。聚类算法通常用于识别具有降低变异性的数据群体,但缺乏对剩余异质性的评估。在这里,我们开发了一种基于空间滤波的快速而简单的算法来估计重构的异质性。在没有灵活性的情况下,该估计近似于大分子成分占有率。我们表明,我们的实现可以得出合理的输入参数,可以基于对比度损失来估计组成异质性,并且可以相应地修改重构以模拟改变的组成占有率。这将有益于传统使用的最大似然分类方法,而我们在这里将考虑限制在低温电子显微镜图谱解释、定量和粒子图像信号扣除方面。