Division of Drug Informatics, Keio University Faculty of Pharmacy, Tokyo, Japan.
Nara Institute of Science and Technology, Nara, Japan.
Sci Rep. 2023 Sep 19;13(1):15516. doi: 10.1038/s41598-023-42496-1.
Adverse event (AE) management is important to improve anti-cancer treatment outcomes, but it is known that some AE signals can be missed during clinical visits. In particular, AEs that affect patients' activities of daily living (ADL) need careful monitoring as they may require immediate medical intervention. This study aimed to build deep-learning (DL) models for extracting signals of AEs limiting ADL from patients' narratives. The data source was blog posts written in Japanese by breast cancer patients. After pre-processing and annotation for AE signals, three DL models (BERT, ELECTRA, and T5) were trained and tested in three different approaches for AE signal identification. The performances of the trained models were evaluated in terms of precision, recall, and F1 scores. From 2,272 blog posts, 191 and 702 articles were identified as describing AEs limiting ADL or not limiting ADL, respectively. Among tested DL modes and approaches, T5 showed the best F1 scores to identify articles with AE limiting ADL or all AE: 0.557 and 0.811, respectively. The most frequent AE signals were "pain or numbness", "fatigue" and "nausea". Our results suggest that this AE monitoring scheme focusing on patients' ADL has potential to reinforce current AE management provided by medical staff.
不良事件 (AE) 管理对于改善抗癌治疗效果很重要,但已知在临床就诊期间可能会错过一些 AE 信号。特别是影响患者日常生活活动 (ADL) 的 AE 需要仔细监测,因为它们可能需要立即进行医疗干预。本研究旨在构建从患者叙述中提取限制 ADL 的 AE 信号的深度学习 (DL) 模型。数据源是日本乳腺癌患者撰写的博客文章。在对 AE 信号进行预处理和注释后,我们在三种不同的 AE 信号识别方法中训练和测试了三个 DL 模型 (BERT、ELECTRA 和 T5)。训练模型的性能通过精度、召回率和 F1 分数进行评估。从 2272 篇博客文章中,分别有 191 篇和 702 篇文章被确定为描述限制 ADL 的 AE 或不限制 ADL 的 AE。在测试的 DL 模式和方法中,T5 在识别具有限制 ADL 的 AE 或所有 AE 的文章方面表现出最佳的 F1 分数:分别为 0.557 和 0.811。最常见的 AE 信号是“疼痛或麻木”、“疲劳”和“恶心”。我们的研究结果表明,这种关注患者 ADL 的 AE 监测方案有可能加强医务人员提供的当前 AE 管理。