Sakr Mahmoud A S, Saad Mohamed A, Abdelsalam Hazem, Teleb Nahed H, Zhang Qinfang
Chemistry Department, Center of Basic Science (CBS), Misr University of Science and Technology (MUST), 6th October City, Egypt.
Physics Department, Center of Basic Science (CBS), Misr University of Science and Technology (MUST), 6th October City, Egypt.
Sci Rep. 2023 Sep 19;13(1):15535. doi: 10.1038/s41598-023-42855-y.
We employed density functional theory calculations to investigate the electronic and optical characteristics of finite GaAs nanoribbons (NRs). Our study encompasses chemical alterations including doping, functionalization, and complete passivation, aimed at tailoring NR properties. The structural stability of these NRs was affirmed by detecting real vibrational frequencies in infrared spectra, indicating dynamical stability. Positive binding energies further corroborated the robust formation of NRs. Analysis of doped GaAs nanoribbons revealed a diverse range of energy gaps (approximately 2.672 to 5.132 eV). The introduction of F atoms through passivation extended the gap to 5.132 eV, while Cu atoms introduced via edge doping reduced it to 2.672 eV. A density of states analysis indicated that As atom orbitals primarily contributed to occupied molecular orbitals, while Ga atom orbitals significantly influenced unoccupied states. This suggested As atoms as electron donors and Ga atoms as electron acceptors in potential interactions. We investigated excited-state electron-hole interactions through various indices, including electron-hole overlap and charge-transfer length. These insights enriched our understanding of these interactions. Notably, UV-Vis absorption spectra exhibited intriguing phenomena. Doping with Te, Cu, W, and Mo induced redshifts, while functionalization induced red/blue shifts in GaAs-34NR spectra. Passivation, functionalization, and doping collectively enhanced electrical conductivity, highlighting the potential for improving material properties. Among the compounds studied, GaAs-34NR-edg-Cu demonstrated the highest electrical conductivity, while GaAs-34NR displayed the lowest. In summary, our comprehensive investigation offers valuable insights into customizing GaAs nanoribbon characteristics, with promising implications for nanoelectronics and optoelectronics applications.
我们采用密度泛函理论计算来研究有限GaAs纳米带(NRs)的电子和光学特性。我们的研究涵盖了包括掺杂、功能化和完全钝化在内的化学变化,旨在调整NRs的性质。通过检测红外光谱中的真实振动频率,证实了这些NRs的结构稳定性,表明其动力学稳定性。正结合能进一步证实了NRs的稳健形成。对掺杂GaAs纳米带的分析揭示了一系列不同的能隙(约2.672至5.132电子伏特)。通过钝化引入F原子将能隙扩展到5.132电子伏特,而通过边缘掺杂引入的Cu原子将其降低到2.672电子伏特。态密度分析表明,As原子轨道主要对占据分子轨道有贡献,而Ga原子轨道对未占据态有显著影响。这表明在潜在相互作用中As原子作为电子供体,Ga原子作为电子受体。我们通过各种指标,包括电子 - 空穴重叠和电荷转移长度,研究了激发态电子 - 空穴相互作用。这些见解丰富了我们对这些相互作用的理解。值得注意的是,紫外 - 可见吸收光谱表现出有趣的现象。用Te、Cu、W和Mo掺杂会引起红移,而功能化会在GaAs - 34NR光谱中引起红移/蓝移。钝化、功能化和掺杂共同提高了电导率,突出了改善材料性能的潜力。在所研究的化合物中,GaAs - 34NR - edg - Cu表现出最高的电导率,而GaAs - 34NR表现出最低的电导率。总之,我们的全面研究为定制GaAs纳米带特性提供了有价值的见解,对纳米电子学和光电子学应用具有广阔的前景。