Suppr超能文献

通过配体功能化定制硫掺杂氮化硼量子点的光学和光催化性能。

Tailoring optical and photocatalytic properties of sulfur-doped boron nitride quantum dots via ligand functionalization.

作者信息

Cui Peng, Wu Qiulan

机构信息

School of New Materials and Shoes & Clothing Engineering, Liming Vocational University, Quanzhou 362000, People's Republic of China.

出版信息

Nanotechnology. 2024 Feb 9;35(17). doi: 10.1088/1361-6528/ad22ab.

Abstract

Boron nitride quantum dots (BNQDs) have emerged as promising photocatalysts due to their excellent physicochemical properties. This study investigates strategies to enhance the photocatalytic performance of BNQDs through sulfur-doping (S-BNQDs) and edge-functionalization with ligands (urea, thiourea, p-phenyl-enediamine (PPD)). To analyze the geometry, electronic structure, optical absorption, charge transfer, and photocatalytic parameters of pristine and functionalized S-BNQDs, we performed density functional theory calculations. The results showed that S-doping and ligand functionalization tune the bandgap, band energies, and introduce mid-gap states to facilitate light absorption, charge separation, and optimized energetics for photocatalytic redox reactions. Notably, the PPD ligand induced the most substantial bandgap narrowing and absorption edge red-shift by over 1 electron volt (eV) compared to pristine S-BNQD, significantly expanding light harvesting. Additionally, urea and PPD functionalization increased the charge transfer length by up to 2.5 times, effectively reducing recombination. On the other hand, thiourea functionalization yielded the most favorable electron injection energetics. The energy conversion efficiency followed the order: PPD (15.0%) > thiourea (12.0%) > urea (11.0%) > pristine (10.0%). Moreover, urea functionalization maximized the first-order hyperpolarizability, enhancing light absorption. These findings provide valuable insights into tailoring S-BNQDs through strategic doping and functionalization to develop highly efficient, customized photocatalysts for sustainable applications.

摘要

氮化硼量子点(BNQDs)因其优异的物理化学性质而成为有前景的光催化剂。本研究探究了通过硫掺杂(S-BNQDs)和用配体(尿素、硫脲、对苯二胺(PPD))进行边缘功能化来提高BNQDs光催化性能的策略。为了分析原始的和功能化的S-BNQDs的几何结构、电子结构、光吸收、电荷转移和光催化参数,我们进行了密度泛函理论计算。结果表明,硫掺杂和配体功能化调节了带隙、能带能量,并引入了带隙中间态,以促进光吸收、电荷分离,并优化光催化氧化还原反应的能量学。值得注意的是,与原始的S-BNQD相比,PPD配体导致了最显著的带隙变窄和吸收边缘红移超过1电子伏特(eV),显著扩大了光捕获范围。此外,尿素和PPD功能化使电荷转移长度增加了2.5倍,有效减少了复合。另一方面,硫脲功能化产生了最有利的电子注入能量学。能量转换效率的顺序为:PPD(15.0%)>硫脲(12.0%)>尿素(11.0%)>原始的(10.0%)。此外,尿素功能化使一阶超极化率最大化,增强了光吸收。这些发现为通过策略性掺杂和功能化定制S-BNQDs以开发用于可持续应用的高效、定制光催化剂提供了有价值的见解。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验