Suppr超能文献

使用 DeTREM 对基于单细胞核 RNA 测序数据的偏倚校正进行批量脑组织细胞类型去卷积。

Bulk brain tissue cell-type deconvolution with bias correction for single-nuclei RNA sequencing data using DeTREM.

机构信息

Bioinformatics Program, Boston University, Boston, MA, USA.

Department of Medicine (Biomedical Genetics), Boston University, Chobanian & Avedisian School of Medicine, Boston, MA, USA.

出版信息

BMC Bioinformatics. 2023 Sep 19;24(1):349. doi: 10.1186/s12859-023-05476-w.

Abstract

BACKGROUND

Quantifying cell-type abundance in bulk tissue RNA-sequencing enables researchers to better understand complex systems. Newer deconvolution methodologies, such as MuSiC, use cell-type signatures derived from single-cell RNA-sequencing (scRNA-seq) data to make these calculations. Single-nuclei RNA-sequencing (snRNA-seq) reference data can be used instead of scRNA-seq data for tissues such as human brain where single-cell data are difficult to obtain, but accuracy suffers due to sequencing differences between the technologies.

RESULTS

We propose a modification to MuSiC entitled 'DeTREM' which compensates for sequencing differences between the cell-type signature and bulk RNA-seq datasets in order to better predict cell-type fractions. We show DeTREM to be more accurate than MuSiC in simulated and real human brain bulk RNA-sequencing datasets with various cell-type abundance estimates. We also compare DeTREM to SCDC and CIBERSORTx, two recent deconvolution methods that use scRNA-seq cell-type signatures. We find that they perform well in simulated data but produce less accurate results than DeTREM when used to deconvolute human brain data.

CONCLUSION

DeTREM improves the deconvolution accuracy of MuSiC and outperforms other deconvolution methods when applied to snRNA-seq data. DeTREM enables accurate cell-type deconvolution in situations where scRNA-seq data are not available. This modification improves characterization cell-type specific effects in brain tissue and identification of cell-type abundance differences under various conditions.

摘要

背景

在批量组织 RNA 测序中量化细胞类型丰度可以帮助研究人员更好地理解复杂系统。较新的去卷积方法,如 MuSiC,使用来自单细胞 RNA 测序 (scRNA-seq) 数据的细胞类型特征来进行这些计算。对于人类大脑等难以获得单细胞数据的组织,可以使用单核 RNA 测序 (snRNA-seq) 参考数据代替 scRNA-seq 数据,但由于两种技术之间的测序差异,准确性会受到影响。

结果

我们提出了一种名为“DeTREM”的 MuSiC 改进方法,该方法补偿了细胞类型特征和批量 RNA-seq 数据集之间的测序差异,以更好地预测细胞类型分数。我们表明,DeTREM 在模拟和真实的人类大脑批量 RNA-seq 数据集中比 MuSiC 更准确,具有各种细胞类型丰度估计。我们还将 DeTREM 与 SCDC 和 CIBERSORTx 进行了比较,这两种最近的去卷积方法使用 scRNA-seq 细胞类型特征。我们发现它们在模拟数据中表现良好,但在用于去卷积人脑数据时,结果不如 DeTREM 准确。

结论

DeTREM 提高了 MuSiC 的去卷积准确性,并且在应用于 snRNA-seq 数据时优于其他去卷积方法。在无法获得 scRNA-seq 数据的情况下,DeTREM 可以实现准确的细胞类型去卷积。这种改进可以改善脑组织中细胞类型特异性效应的特征描述,并识别各种条件下的细胞类型丰度差异。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6ad3/10507917/6c78cfaae1d6/12859_2023_5476_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验