文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Integrating single-cell and single-nucleus datasets improves bulk RNA-seq deconvolution.

作者信息

Ivich Adriana, Greene Casey S

机构信息

Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.

出版信息

bioRxiv. 2025 Aug 23:2025.08.20.671333. doi: 10.1101/2025.08.20.671333.


DOI:10.1101/2025.08.20.671333
PMID:40894744
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12393506/
Abstract

Bulk RNA-seq deconvolution typically uses single-cell RNA-sequencing (scRNA-seq) references, but some cell types are only detectable through single-nucleus RNA sequencing (snRNA-seq). Because snRNA-seq captures nuclear, but not cytoplasmic, transcripts, direct use as a reference could reduce deconvolution accuracy. Here, we systematically benchmark strategies to integrate both modalities, focusing on transformations and gene-filtering approaches that harmonize snRNA-seq with scRNA-seq references. Across four diverse tissues, we evaluated principal component-based shifts, conditional and non-conditional variational autoencoders (scVI), and the removal of cross-modality differentially expressed genes (DEGs). While all methods improved performance relative to untransformed snRNA-seq, filtering consistent cross-modality DEGs delivered the greatest gains, often matching or surpassing scRNA-only references. Conditional scVI performed comparably and was especially effective when matched scRNA-snRNA cell types were unavailable. In real adipose bulk samples without ground truth, DEG pruning and conditional scVI provided the most robust cell-fraction estimates across donors and transformations. Together, these results demonstrate that scRNA-seq should be prioritized as the reference when available, with snRNA-seq appended only after filtering cross-modality DEGs. For less-characterized systems where DEG information is limited, conditional scVI offers a practical alternative. Our findings provide clear guidelines for modality-aware integration, enabling near-scRNA-seq accuracy in bulk deconvolution workflows.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99bc/12393506/ce7557a364c6/nihpp-2025.08.20.671333v1-f0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99bc/12393506/a60bc6537f3b/nihpp-2025.08.20.671333v1-f0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99bc/12393506/e12d896ff95b/nihpp-2025.08.20.671333v1-f0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99bc/12393506/ce7557a364c6/nihpp-2025.08.20.671333v1-f0017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99bc/12393506/a60bc6537f3b/nihpp-2025.08.20.671333v1-f0015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99bc/12393506/e12d896ff95b/nihpp-2025.08.20.671333v1-f0016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/99bc/12393506/ce7557a364c6/nihpp-2025.08.20.671333v1-f0017.jpg

相似文献

[1]
Integrating single-cell and single-nucleus datasets improves bulk RNA-seq deconvolution.

bioRxiv. 2025-8-23

[2]
Prescription of Controlled Substances: Benefits and Risks

2025-1

[3]
Bulk brain tissue cell-type deconvolution with bias correction for single-nuclei RNA sequencing data using DeTREM.

BMC Bioinformatics. 2023-9-19

[4]
MuSiC2: cell-type deconvolution for multi-condition bulk RNA-seq data.

Brief Bioinform. 2022-11-19

[5]
Evaluating methods for integrating single-cell data and genetics to understand inflammatory disease complexity.

Front Immunol. 2024-12-5

[6]
A rapid and systematic review of the clinical effectiveness and cost-effectiveness of paclitaxel, docetaxel, gemcitabine and vinorelbine in non-small-cell lung cancer.

Health Technol Assess. 2001

[7]
Single-cell and spatial transcriptomics profile the interaction of macrophages and fibroblasts in non-small cell lung cancer.

Transl Lung Cancer Res. 2025-7-31

[8]
Signs and symptoms to determine if a patient presenting in primary care or hospital outpatient settings has COVID-19.

Cochrane Database Syst Rev. 2022-5-20

[9]
scRNA-seq Can Identify Different Cell Populations in Ovarian Cancer Bulk RNA-seq Experiments.

Int J Mol Sci. 2025-8-4

[10]
Omnibus and robust deconvolution scheme for bulk RNA sequencing data integrating multiple single-cell reference sets and prior biological knowledge.

Bioinformatics. 2022-9-30

本文引用的文献

[1]
Missing cell types in single-cell references impact deconvolution of bulk data but are detectable.

Genome Biol. 2025-4-7

[2]
Benchmark of cellular deconvolution methods using a multi-assay dataset from postmortem human prefrontal cortex.

Genome Biol. 2025-4-7

[3]
Application of CIBERSORTx and BayesPrism to deconvolution of bulk RNA-seq data from human myocardium and skeletal muscle.

Heliyon. 2025-2-10

[4]
Deep profiling of gene expression across 18 human cancers.

Nat Biomed Eng. 2025-3

[5]
GENCODE 2025: reference gene annotation for human and mouse.

Nucleic Acids Res. 2025-1-6

[6]
sNucConv: A bulk RNA-seq deconvolution method trained on single-nucleus RNA-seq data to estimate cell-type composition of human adipose tissues.

iScience. 2024-6-24

[7]
InstaPrism: an R package for fast implementation of BayesPrism.

Bioinformatics. 2024-7-1

[8]
Big data and deep learning for RNA biology.

Exp Mol Med. 2024-6

[9]
Automatic cell-type harmonization and integration across Human Cell Atlas datasets.

Cell. 2023-12-21

[10]
Challenges and opportunities to computationally deconvolve heterogeneous tissue with varying cell sizes using single-cell RNA-sequencing datasets.

Genome Biol. 2023-12-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索