Suppr超能文献

新型多目标亲和方法有助于识别pH特异性μ阿片受体激动剂。

Novel multi-objective affinity approach allows to identify pH-specific μ-opioid receptor agonists.

作者信息

Secker Christopher, Fackeldey Konstantin, Weber Marcus, Ray Sourav, Gorgulla Christoph, Schütte Christof

机构信息

Zuse Institute Berlin, Berlin, Germany.

Max Delbrück Center for Molecular Medicine, Berlin, Germany.

出版信息

J Cheminform. 2023 Sep 19;15(1):85. doi: 10.1186/s13321-023-00746-4.

Abstract

Opioids are essential pharmaceuticals due to their analgesic properties, however, lethal side effects, addiction, and opioid tolerance are extremely challenging. The development of novel molecules targeting the [Formula: see text]-opioid receptor (MOR) in inflamed, but not in healthy tissue, could significantly reduce these unwanted effects. Finding such novel molecules can be achieved by maximizing the binding affinity to the MOR at acidic pH while minimizing it at neutral pH, thus combining two conflicting objectives. Here, this multi-objective optimal affinity approach is presented, together with a virtual drug discovery pipeline for its practical implementation. When applied to finding pH-specific drug candidates, it combines protonation state-dependent structure and ligand preparation with high-throughput virtual screening. We employ this pipeline to characterize a set of MOR agonists identifying a morphine-like opioid derivative with higher predicted binding affinities to the MOR at low pH compared to neutral pH. Our results also confirm existing experimental evidence that NFEPP, a previously described fentanyl derivative with reduced side effects, and recently reported [Formula: see text]-fluorofentanyls and -morphines show an increased specificity for the MOR at acidic pH when compared to fentanyl and morphine. We further applied our approach to screen a >50K ligand library identifying novel molecules with pH-specific predicted binding affinities to the MOR. The presented differential docking pipeline can be applied to perform multi-objective affinity optimization to identify safer and more specific drug candidates at large scale.

摘要

阿片类药物因其镇痛特性而成为重要药物,然而,其致命的副作用、成瘾性和阿片类药物耐受性极具挑战性。开发针对炎症组织而非健康组织中的μ-阿片受体(MOR)的新型分子,可显著减少这些不良影响。通过在酸性pH下最大化与MOR的结合亲和力,同时在中性pH下最小化结合亲和力,从而兼顾两个相互冲突的目标,有望找到此类新型分子。本文介绍了这种多目标最优亲和力方法及其实际应用的虚拟药物发现流程。在用于寻找pH特异性候选药物时,该方法将质子化状态依赖的结构和配体制备与高通量虚拟筛选相结合。我们利用此流程对一组MOR激动剂进行表征,鉴定出一种与吗啡类似的阿片类衍生物,与中性pH相比,其在低pH下对MOR的预测结合亲和力更高。我们的结果还证实了现有实验证据,即先前描述的副作用较小的芬太尼衍生物NFEPP以及最近报道的[化学式:见原文]-氟芬太尼和-吗啡与芬太尼和吗啡相比,在酸性pH下对MOR具有更高的特异性。我们进一步应用我们的方法筛选了一个超过50K的配体库,鉴定出对MOR具有pH特异性预测结合亲和力的新型分子。所提出的差异对接流程可用于进行多目标亲和力优化,以大规模鉴定更安全、更具特异性的候选药物。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1e85/10510211/d901f30b5b43/13321_2023_746_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验