Suppr超能文献

高速原子力显微镜对 CENP-A 染色质的单分子分析。

Single molecule analysis of CENP-A chromatin by high-speed atomic force microscopy.

机构信息

National Cancer Institute, Center for Cancer Research, Laboratory Receptor Biology and Gene Expression, Bethesda, United States.

National Heart, Lung, and Blood Institute, Laboratory of Single Molecule Biophysics, Bethesda, United States.

出版信息

Elife. 2023 Sep 20;12:e86709. doi: 10.7554/eLife.86709.

Abstract

Chromatin accessibility is modulated in a variety of ways to create open and closed chromatin states, both of which are critical for eukaryotic gene regulation. At the single molecule level, how accessibility is regulated of the chromatin fiber composed of canonical or variant nucleosomes is a fundamental question in the field. Here, we developed a single-molecule tracking method where we could analyze thousands of canonical H3 and centromeric variant nucleosomes imaged by high-speed atomic force microscopy. This approach allowed us to investigate how changes in nucleosome dynamics in vitro inform us about transcriptional potential in vivo. By high-speed atomic force microscopy, we tracked chromatin dynamics in real time and determined the mean square displacement and diffusion constant for the variant centromeric CENP-A nucleosome. Furthermore, we found that an essential kinetochore protein CENP-C reduces the diffusion constant and mobility of centromeric nucleosomes along the chromatin fiber. We subsequently interrogated how CENP-C modulates CENP-A chromatin dynamics in vivo. Overexpressing CENP-C resulted in reduced centromeric transcription and impaired loading of new CENP-A molecules. From these data, we speculate that factors altering nucleosome mobility in vitro, also correspondingly alter transcription in vivo. Subsequently, we propose a model in which variant nucleosomes encode their own diffusion kinetics and mobility, and where binding partners can suppress or enhance nucleosome mobility.

摘要

染色质可通过多种方式实现开放性和封闭性构象的转变,这两种状态对真核生物基因调控都至关重要。在单分子水平上,经典核小体或变异核小体组成的染色质纤维的可及性如何受到调控,这是该领域的一个基本问题。在这里,我们开发了一种单分子追踪方法,利用该方法可以通过高速原子力显微镜分析数千个经典 H3 和着丝粒变异核小体的成像。该方法使我们能够研究体外核小体动力学的变化如何为体内转录潜能提供信息。通过高速原子力显微镜,我们实时跟踪染色质动力学,并确定了变异着丝粒 CENP-A 核小体的均方位移和扩散常数。此外,我们发现一个必需的着丝粒蛋白 CENP-C 降低了着丝粒核小体在染色质纤维上的扩散常数和迁移率。随后,我们研究了 CENP-C 如何在体内调节 CENP-A 染色质动力学。过表达 CENP-C 导致着丝粒转录减少和新 CENP-A 分子的加载受损。根据这些数据,我们推测改变体外核小体迁移率的因素也会相应地改变体内转录。随后,我们提出了一个模型,其中变异核小体编码其自身的扩散动力学和迁移率,并且结合蛋白可以抑制或增强核小体迁移率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/46a4/10511241/2e7d892da9c9/elife-86709-fig1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验