Scanning Probe Microscopy Unit, Biomedical Engineering and Physical Science Shared Resource, National Institute for Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, USA.
Proc Natl Acad Sci U S A. 2010 Nov 23;107(47):20317-22. doi: 10.1073/pnas.1009563107. Epub 2010 Nov 8.
Mitosis ensures equal genome segregation in the eukaryotic lineage. This process is facilitated by microtubule attachment to each chromosome via its centromere. In centromeres, canonical histone H3 is replaced in nucleosomes by a centromere-specific histone H3 variant (CENH3), providing the unique epigenetic signature required for microtubule binding. Due to recent findings of alternative CENH3 nucleosomal forms in invertebrate centromeres, it has been debated whether the classical octameric nucleosomal arrangement of two copies of CENH3, H4, H2A, and H2B forms the basis of the vertebrate centromere. To address this question directly, we examined CENH3 [centromere protein A (CENP-A)] nucleosomal organization in human cells, using a combination of nucleosome component analysis, atomic force microscopy (AFM), and immunoelectron microscopy (immuno-EM). We report that native CENP-A nucleosomes contain centromeric alpha satellite DNA, have equimolar amounts of H2A, H2B, CENP-A, and H4, and bind kinetochore proteins. These nucleosomes, when measured by AFM, yield one-half the dimensions of canonical octameric nucleosomes. Using immuno-EM, we find that one copy of CENP-A, H2A, H2B, and H4 coexist in CENP-A nucleosomes, in which internal C-terminal domains are accessible. Our observations indicate that CENP-A nucleosomes are organized as asymmetric heterotypic tetramers, rather than canonical octamers. Such altered nucleosomes form a chromatin fiber with distinct folding characteristics, which we utilize to discriminate tetramers directly within bulk chromatin. We discuss implications of our observations in the context of universal epigenetic and mechanical requirements for functional centromeres.
有丝分裂确保真核生物谱系中基因组的均等分离。这个过程通过微管与每个染色体的着丝粒附着来实现。在着丝粒中,经典组蛋白 H3 被着丝粒特异性组蛋白 H3 变体 (CENH3) 取代,提供微管结合所需的独特表观遗传特征。由于最近在无脊椎动物着丝粒中发现了替代的 CENH3 核小体形式,人们一直在争论经典的 CENH3 八聚体核小体排列,即两个 CENH3、H4、H2A 和 H2B 拷贝的核小体排列,是否构成脊椎动物着丝粒的基础。为了直接解决这个问题,我们使用核小体成分分析、原子力显微镜 (AFM) 和免疫电子显微镜 (immuno-EM) 的组合,研究了人类细胞中 CENH3(着丝粒蛋白 A (CENP-A))核小体的组织。我们报告说,天然的 CENP-A 核小体包含着丝粒α卫星 DNA,具有等量的 H2A、H2B、CENP-A 和 H4,并结合着丝粒蛋白。这些核小体,通过 AFM 测量,其尺寸为经典八聚体核小体的一半。通过 immuno-EM,我们发现 CENP-A、H2A、H2B 和 H4 的一个拷贝在 CENP-A 核小体中共存,其中内部 C 端结构域是可及的。我们的观察表明,CENP-A 核小体被组织成不对称的异型四聚体,而不是经典的八聚体。这种改变的核小体形成具有独特折叠特征的染色质纤维,我们利用该特征直接在体染色质中区分四聚体。我们讨论了我们的观察结果在功能着丝粒的普遍表观遗传和机械要求方面的意义。