Suppr超能文献

不同清洗程序对个性化基台暴露的影响:采用 AI 辅助 SEM/EDS 分析的体外研究。

Influence of exposure of customized dental implant abutments to different cleaning procedures: an in vitro study using AI-assisted SEM/EDS analysis.

机构信息

Department of Oral Diagnostics, Digital Health and Health Services Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität Zu Berlin, Aßmannshauser Str. 4-6, 14197, Berlin, Germany.

Private Dental Laboratory, Schumannstraße 1, 10117, Berlin, Germany.

出版信息

Int J Implant Dent. 2023 Sep 20;9(1):33. doi: 10.1186/s40729-023-00498-8.

Abstract

PURPOSE

Dental implant abutments are defined as medical devices by their intended use. Surfaces of custom-made CAD/CAM two-piece abutments may become contaminated during the manufacturing process in the dental lab. Inadequate reprocessing prior to patient care may contribute to implant-associated complications. Risk-adapted hygiene management is required to meet the requirements for medical devices.

METHODS

A total of 49 CAD/CAM-manufactured zirconia copings were bonded to prefabricated titanium bases. One group was bonded, polished, and cleaned separately in dental laboratories throughout Germany (LA). Another group was left untreated (NC). Five groups received the following hygiene regimen: three-stage ultrasonic cleaning (CP and FP), steam (SC), argon-oxygen plasma (PL), and simple ultrasonic cleaning (UD). Contaminants were detected using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) and segmented and quantified using interactive machine learning (ML) and thresholding (SW). The data were statistically analysed using non-parametric tests (Kruskal-Wallis test, Dunn's test).

RESULTS

Significant differences in contamination levels with the different cleaning procedures were found (p ≤ 0.01). The FP-NC/LA groups showed the most significant difference in contamination levels for both measurement methods (ML, SW), followed by CP-LA/NC and UD-LA/NC for SW and CP-LA/NC and PL-LA/NC for ML (p ≤ 0.05). EDS revealed organic contamination in all specimens; traces of aluminum, silicon, and calcium were detected.

CONCLUSIONS

Chemothermal cleaning methods based on ultrasound and argon-oxygen plasma effectively removed process-related contamination from zirconia surfaces. Machine learning is a promising assessment tool for quantifying and monitoring external contamination on zirconia abutments.

摘要

目的

牙科种植体基台因其预期用途被定义为医疗器械。定制 CAD/CAM 两段式基台的表面在牙科实验室的制造过程中可能会受到污染。在进行患者护理之前,如果处理不当,可能会导致与种植体相关的并发症。需要进行风险适应的卫生管理,以满足医疗器械的要求。

方法

共将 49 个 CAD/CAM 制造的氧化锆牙冠粘结到预制钛基底上。一组在德国各地的牙科实验室中分别进行粘结、抛光和清洁(LA)。另一组未进行处理(NC)。五组分别接受以下卫生方案:三步超声清洗(CP 和 FP)、蒸汽(SC)、氩氧等离子体(PL)和简单超声清洗(UD)。使用扫描电子显微镜(SEM)和能量色散 X 射线光谱(EDS)检测污染物,并使用交互式机器学习(ML)和阈值(SW)进行分段和量化。使用非参数检验(Kruskal-Wallis 检验,Dunn 检验)对数据进行统计学分析。

结果

不同清洁程序的污染水平存在显著差异(p≤0.01)。FP-NC/LA 组在两种测量方法(ML、SW)中均显示出最显著的污染水平差异,其次是 CP-LA/NC 和 UD-LA/NC 组(SW)和 CP-LA/NC 和 PL-LA/NC 组(ML)(p≤0.05)。EDS 显示所有样本均存在有机污染;检测到铝、硅和钙的痕迹。

结论

基于超声和氩氧等离子体的化学热清洗方法可有效去除氧化锆表面的与工艺相关的污染。机器学习是量化和监测氧化锆基台外部污染的有前途的评估工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9692/10511398/a24c423d7218/40729_2023_498_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验