Suppr超能文献

MYC——线粒体疾病中的一个新角色。

MYC-an emerging player in mitochondrial diseases.

作者信息

Purhonen Janne, Klefström Juha, Kallijärvi Jukka

机构信息

Folkhälsan Research Center, Helsinki, Finland.

Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.

出版信息

Front Cell Dev Biol. 2023 Sep 4;11:1257651. doi: 10.3389/fcell.2023.1257651. eCollection 2023.

Abstract

The mitochondrion is a major hub of cellular metabolism and involved directly or indirectly in almost all biological processes of the cell. In mitochondrial diseases, compromised respiratory electron transfer and oxidative phosphorylation (OXPHOS) lead to compensatory rewiring of metabolism with resemblance to the Warburg-like metabolic state of cancer cells. The transcription factor MYC (or c-MYC) is a major regulator of metabolic rewiring in cancer, stimulating glycolysis, nucleotide biosynthesis, and glutamine utilization, which are known or predicted to be affected also in mitochondrial diseases. Albeit not widely acknowledged thus far, several cell and mouse models of mitochondrial disease show upregulation of MYC and/or its typical transcriptional signatures. Moreover, gene expression and metabolite-level changes associated with mitochondrial integrated stress response (mt-ISR) show remarkable overlap with those of MYC overexpression. In addition to being a metabolic regulator, MYC promotes cellular proliferation and modifies the cell cycle kinetics and, especially at high expression levels, promotes replication stress and genomic instability, and sensitizes cells to apoptosis. Because cell proliferation requires energy and doubling of the cellular biomass, replicating cells should be particularly sensitive to defective OXPHOS. On the other hand, OXPHOS-defective replicating cells are predicted to be especially vulnerable to high levels of MYC as it facilitates evasion of metabolic checkpoints and accelerates cell cycle progression. Indeed, a few recent studies demonstrate cell cycle defects and nuclear DNA damage in OXPHOS deficiency. Here, we give an overview of key mitochondria-dependent metabolic pathways known to be regulated by MYC, review the current literature on MYC expression in mitochondrial diseases, and speculate how its upregulation may be triggered by OXPHOS deficiency and what implications this has for the pathogenesis of these diseases.

摘要

线粒体是细胞代谢的主要枢纽,直接或间接参与细胞的几乎所有生物学过程。在线粒体疾病中,呼吸电子传递和氧化磷酸化(OXPHOS)受损导致代谢的代偿性重新布线,类似于癌细胞的沃伯格样代谢状态。转录因子MYC(或c-MYC)是癌症中代谢重新布线的主要调节因子,刺激糖酵解、核苷酸生物合成和谷氨酰胺利用,已知或预计这些过程在线粒体疾病中也会受到影响。尽管迄今为止尚未得到广泛认可,但几种线粒体疾病的细胞和小鼠模型显示出MYC及其典型转录特征的上调。此外,与线粒体整合应激反应(mt-ISR)相关的基因表达和代谢物水平变化与MYC过表达的变化显著重叠。除了作为代谢调节因子外,MYC还促进细胞增殖并改变细胞周期动力学,特别是在高表达水平时,促进复制应激和基因组不稳定,并使细胞对凋亡敏感。由于细胞增殖需要能量和细胞生物量的加倍,复制细胞应该对OXPHOS缺陷特别敏感。另一方面,预计OXPHOS缺陷的复制细胞对高水平的MYC特别脆弱,因为它有助于逃避代谢检查点并加速细胞周期进程。事实上,最近的一些研究证明了OXPHOS缺乏时的细胞周期缺陷和核DNA损伤。在这里,我们概述了已知受MYC调节的关键线粒体依赖性代谢途径,回顾了线粒体疾病中MYC表达的当前文献,并推测其上调可能如何由OXPHOS缺陷触发以及这对这些疾病的发病机制有何影响。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7e2c/10507175/681d4432cfae/fcell-11-1257651-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验