Folkhälsan Research Center, Haartmaninkatu 8, 00290, Helsinki, Finland.
Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, P.O.Box 63, 00014, Helsinki, Finland.
Nat Commun. 2023 Apr 24;14(1):2356. doi: 10.1038/s41467-023-38027-1.
Accumulating evidence suggests mitochondria as key modulators of normal and premature aging, yet whether primary oxidative phosphorylation (OXPHOS) deficiency can cause progeroid disease remains unclear. Here, we show that mice with severe isolated respiratory complex III (CIII) deficiency display nuclear DNA damage, cell cycle arrest, aberrant mitoses, and cellular senescence in the affected organs such as liver and kidney, and a systemic phenotype resembling juvenile-onset progeroid syndromes. Mechanistically, CIII deficiency triggers presymptomatic cancer-like c-MYC upregulation followed by excessive anabolic metabolism and illicit cell proliferation against lack of energy and biosynthetic precursors. Transgenic alternative oxidase dampens mitochondrial integrated stress response and the c-MYC induction, suppresses the illicit proliferation, and prevents juvenile lethality despite that canonical OXPHOS-linked functions remain uncorrected. Inhibition of c-MYC with the dominant-negative Omomyc protein relieves the DNA damage in CIII-deficient hepatocytes in vivo. Our results connect primary OXPHOS deficiency to genomic instability and progeroid pathogenesis and suggest that targeting c-MYC and aberrant cell proliferation may be therapeutic in mitochondrial diseases.
越来越多的证据表明线粒体是调节正常和过早衰老的关键因素,但原发性氧化磷酸化(OXPHOS)缺陷是否会导致早老性疾病仍不清楚。在这里,我们发现严重的呼吸链复合物 III(CIII)缺陷小鼠在肝脏和肾脏等受影响的器官中表现出核 DNA 损伤、细胞周期停滞、异常有丝分裂和细胞衰老,以及类似于青少年发病型早老综合征的全身性表型。从机制上讲,CIII 缺陷触发了类似癌症的 c-MYC 提前上调,随后在缺乏能量和生物合成前体的情况下,过度合成代谢和非法细胞增殖。转基因替代氧化酶抑制了线粒体整合应激反应和 c-MYC 的诱导,抑制了非法增殖,并预防了尽管经典 OXPHOS 相关功能未得到纠正的青少年致死性。用显性负 Omomyc 蛋白抑制 c-MYC 可减轻体内 CIII 缺陷肝细胞的 DNA 损伤。我们的研究结果将原发性 OXPHOS 缺陷与基因组不稳定性和早老性发病机制联系起来,并表明靶向 c-MYC 和异常细胞增殖可能对线粒体疾病具有治疗作用。